Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1 +1,78 @@
|
|
1 |
-
|
2 |
chain = ConversationalRetrievalChain.from_llm(llm=llm,retriever=retriever)
|
3 |
print("LLM or Vector Database not initialized")
|
4 |
history_langchain_format = []
|
5 |
prompt = PromptTemplate(template=prompt_template,
|
6 |
input_variables=["chat_history", 'message'])
|
7 |
response = chain({"question": message, "chat_history": chat_history})
|
8 |
|
9 |
answer = response['answer']
|
10 |
|
11 |
chat_history.append((message, answer))
|
12 |
|
13 |
temp = []
|
14 |
for input_question, bot_answer in history:
|
15 |
temp.append(input_question)
|
16 |
temp.append(bot_answer)
|
17 |
history_langchain_format.append(temp)
|
18 |
temp.clear()
|
19 |
temp.append(message)
|
20 |
temp.append(answer)
|
21 |
history_langchain_format.append(temp)
|
22 |
|
23 |
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
chain = ConversationalRetrievalChain.from_llm(llm=llm,retriever=retriever)
|
2 |
print("LLM or Vector Database not initialized")
|
3 |
history_langchain_format = []
|
4 |
prompt = PromptTemplate(template=prompt_template,
|
5 |
input_variables=["chat_history", 'message'])
|
6 |
response = chain({"question": message, "chat_history": chat_history})
|
7 |
|
8 |
answer = response['answer']
|
9 |
|
10 |
chat_history.append((message, answer))
|
11 |
|
12 |
temp = []
|
13 |
for input_question, bot_answer in history:
|
14 |
temp.append(input_question)
|
15 |
temp.append(bot_answer)
|
16 |
history_langchain_format.append(temp)
|
17 |
temp.clear()
|
18 |
temp.append(message)
|
19 |
temp.append(answer)
|
20 |
history_langchain_format.append(temp)
|
21 |
|
22 |
return answer
|
23 |
+
|
24 |
+
from langchain import PromptTemplate
|
25 |
+
from langchain_community.llms import LlamaCpp
|
26 |
+
from langchain.chains import RetrievalQA
|
27 |
+
from langchain.chains import ConversationalRetrievalChain
|
28 |
+
from langchain.prompts import SystemMessagePromptTemplate
|
29 |
+
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
30 |
+
from fastapi import FastAPI, Request, Form, Response
|
31 |
+
from fastapi.responses import HTMLResponse
|
32 |
+
from fastapi.templating import Jinja2Templates
|
33 |
+
from fastapi.staticfiles import StaticFiles
|
34 |
+
from fastapi.encoders import jsonable_encoder
|
35 |
+
from qdrant_client import QdrantClient
|
36 |
+
from langchain_community.vectorstores import Qdrant
|
37 |
+
import os
|
38 |
+
import json
|
39 |
+
import gradio as gr
|
40 |
+
import sys
|
41 |
+
|
42 |
+
#sys.path.insert(0, <envs\myenv\lib\site-packages>).
|
43 |
+
|
44 |
+
local_llm = "BioMistral-7B.Q4_K_M.gguf"
|
45 |
+
llm = LlamaCpp(model_path=
|
46 |
+
local_llm,temperature=0.3,max_tokens=2048,top_p=1,n_ctx= 2048)
|
47 |
+
|
48 |
+
prompt_template = """Use the following pieces of information to answer the user's question.
|
49 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
50 |
+
|
51 |
+
Chat History: {chat_history}
|
52 |
+
Question: {question}
|
53 |
+
|
54 |
+
Only return the helpful answer. Answer must be detailed and well explained.
|
55 |
+
Helpful answer:
|
56 |
+
"""
|
57 |
+
|
58 |
+
embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings")
|
59 |
+
|
60 |
+
url = "http://localhost:6333"
|
61 |
+
client = QdrantClient(url=url, prefer_grpc=False)
|
62 |
+
db = Qdrant(client=client, embeddings=embeddings, collection_name="vector_db")
|
63 |
+
|
64 |
+
retriever = db.as_retriever(search_kwargs={"k":1})
|
65 |
+
|
66 |
+
chat_history = []
|
67 |
+
|
68 |
+
# Create the custom chain
|
69 |
+
if llm is not None and db is not None:
|
70 |
+
chain = ConversationalRetrievalChain.from_llm(llm=llm,retriever=retriever)
|
71 |
+
else:
|
72 |
+
print("LLM or Vector Database not initialized")
|
73 |
+
|
74 |
+
def predict(message, history):
|
75 |
+
history_langchain_format = []
|
76 |
+
|
77 |
+
prompt = PromptTemplate(template=prompt_template,
|
78 |
+
input_variables=["chat_history", 'message'])
|
79 |
+
|
80 |
+
response = chain({"question": message, "chat_history": chat_history})
|
81 |
+
|
82 |
+
answer = response['answer']
|
83 |
+
|
84 |
+
chat_history.append((message, answer))
|
85 |
+
|
86 |
+
temp = []
|
87 |
+
for input_question, bot_answer in history:
|
88 |
+
temp.append(input_question)
|
89 |
+
temp.append(bot_answer)
|
90 |
+
history_langchain_format.append(temp)
|
91 |
+
temp.clear()
|
92 |
+
temp.append(message)
|
93 |
+
temp.append(answer)
|
94 |
+
history_langchain_format.append(temp)
|
95 |
+
|
96 |
+
return answer
|
97 |
+
|
98 |
+
|
99 |
+
gr.ChatInterface(predict).launch(share=True,enable_queue=True)
|
100 |
+
|