Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
|
4 |
-
|
5 |
-
|
|
|
6 |
|
7 |
def get_data():
|
8 |
-
# Load the CSV file into a DataFrame
|
9 |
df = pd.read_csv(
|
10 |
"https://docs.google.com/spreadsheets/d/e/2PACX-1vSC40sszorOjHfozmNqJT9lFiJhG94u3fbr3Ss_7fzcU3xqqJQuW1Ie_SNcWEB-uIsBi9NBUK7-ddet/pub?output=csv",
|
11 |
skiprows=1,
|
12 |
)
|
13 |
|
14 |
-
# Drop rows where the 'Model' column is NaN
|
15 |
-
df.dropna(subset=['Model'], inplace=True)
|
16 |
|
17 |
-
#
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
for col in columns_to_click:
|
22 |
df[col] = df[col].apply(make_clickable_cell)
|
23 |
|
24 |
return df
|
25 |
|
26 |
-
def make_clickable_cell(cell):
|
27 |
-
if pd.isnull(cell) or not isinstance(cell, str):
|
28 |
-
return ""
|
29 |
-
else:
|
30 |
-
return f'<a target="_blank" href="{cell}">{cell}</a>'
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
#
|
37 |
with gr.Blocks() as demo:
|
38 |
-
# Markdown and DataFrame components
|
39 |
gr.Markdown(title)
|
40 |
gr.Markdown(description)
|
41 |
gr.DataFrame(get_data, datatype=dtypes, every=60)
|
42 |
|
43 |
-
|
44 |
-
demo.launch()
|
|
|
1 |
+
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
2 |
+
|
3 |
+
# %% auto 0
|
4 |
+
__all__ = ['columns_to_click', 'title', 'description', 'dtypes', 'get_data']
|
5 |
+
|
6 |
+
# %% app.ipynb 0
|
7 |
import gradio as gr
|
8 |
import pandas as pd
|
9 |
|
10 |
+
|
11 |
+
# %% app.ipynb 1
|
12 |
+
columns_to_click = ["Paper / Repo", "Selected \nplaygrounds"]
|
13 |
|
14 |
def get_data():
|
|
|
15 |
df = pd.read_csv(
|
16 |
"https://docs.google.com/spreadsheets/d/e/2PACX-1vSC40sszorOjHfozmNqJT9lFiJhG94u3fbr3Ss_7fzcU3xqqJQuW1Ie_SNcWEB-uIsBi9NBUK7-ddet/pub?output=csv",
|
17 |
skiprows=1,
|
18 |
)
|
19 |
|
|
|
|
|
20 |
|
21 |
+
# %% app.ipynb 2
|
22 |
+
# Drop footers
|
23 |
+
df = df.copy()[~df["Model"].isna()]
|
24 |
+
|
25 |
+
|
26 |
+
# %% app.ipynb 3
|
27 |
+
# Drop TBA models
|
28 |
+
df = df.copy()[df["Parameters \n(B)"] != "TBA"]
|
29 |
+
|
30 |
|
31 |
+
# %% app.ipynb 6
|
32 |
+
def make_clickable_cell(cell):
|
33 |
+
if pd.isnull(cell):
|
34 |
+
return ""
|
35 |
+
else:
|
36 |
+
return f'<a target="_blank" href="{cell}">{cell}</a>'
|
37 |
+
|
38 |
+
|
39 |
+
# %% app.ipynb 7
|
40 |
for col in columns_to_click:
|
41 |
df[col] = df[col].apply(make_clickable_cell)
|
42 |
|
43 |
return df
|
44 |
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# %% app.ipynb 2
|
47 |
+
title = """<h1 align="center">The Large Language Models Landscape</h1>"""
|
48 |
+
description = """Large Language Models (LLMs) today come in a variety architectures and capabilities. This interactive landscape provides a visual overview of the most important LLMs, including their training data, size, release date, and whether they are openly accessible or not. It also includes notes on each model to provide additional context. This landscape is derived from data compiled by Dr. Alan D. Thompson at [lifearchitect.ai/models](https://lifearchitect.ai/models/).
|
49 |
+
"""
|
50 |
+
|
51 |
+
|
52 |
+
# %% app.ipynb 3
|
53 |
+
dtypes = ["str" if c not in columns_to_click else "markdown" for c in get_data().columns]
|
54 |
+
|
55 |
|
56 |
+
# %% app.ipynb 4
|
57 |
with gr.Blocks() as demo:
|
|
|
58 |
gr.Markdown(title)
|
59 |
gr.Markdown(description)
|
60 |
gr.DataFrame(get_data, datatype=dtypes, every=60)
|
61 |
|
62 |
+
demo.queue().launch()
|
|