File size: 1,271 Bytes
424c611
 
 
88b8568
424c611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b8568
 
 
 
 
fa64ddb
424c611
 
 
 
fa64ddb
 
424c611
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.

# %% auto 0
__all__ = ['df', 'title', 'description', 'value_func']

# %% app.ipynb 0
import gradio as gr
import pandas as pd

# %% app.ipynb 1
df = pd.read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vSC40sszorOjHfozmNqJT9lFiJhG94u3fbr3Ss_7fzcU3xqqJQuW1Ie_SNcWEB-uIsBi9NBUK7-ddet/pub?output=csv", skiprows=1)

# %% app.ipynb 2
# Drop footers
df = df.copy()[~df["Model"].isna()]

# %% app.ipynb 3
# Drop TBA models
df = df.copy()[df["Parameters \n(B)"] != "TBA"]

# %% app.ipynb 6
title = """<h1 align="center">The Large Language Models Landscape</h1>"""
description = """Large Language Models (LLMs) today come in a variety architectures and capabilities. This interactive landscape provides a visual overview of the most important LLMs, including their training data, size, release date, and whether they are openly accessible or not. It also includes notes on each model to provide additional context. This landscape is derived from data compiled by Dr. Alan D. Thompson at [lifeaarchitext.ai](https://lifearchitect.ai).
"""

# %% app.ipynb 7
def value_func():
    return df

with gr.Blocks() as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.DataFrame(value=value_func)

demo.launch()