# https://blog.knowledgator.com/meet-the-new-zero-shot-ner-architecture-30ffc2cb1ee0 # https://labelstud.io/blog/fine-tuning-generalist-models-for-named-entity-recognition/ import psutil from gliner import GLiNER import streamlit as st LABELS = ["eventTitle", "eventLocation", "date", "time", "street", "city"] class GlinerHandler: def __init__(self, model_name="urchade/gliner_multi-v2.1"): self.model = GLiNER.from_pretrained(model_name) st.info("Using NER Model Gliner") def extract_entities(self, text, labels=None, threshold=0.3): if labels is None: labels = LABELS entities = self.model.predict_entities(text, labels, threshold=threshold) return entities # gliner = GlinerHandler() # entities = gliner.extract_entities("Test 20.03.10, In Nürnberg") # print(entities)