File size: 10,829 Bytes
58c260c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os
import re
from datetime import datetime

import joblib
import spacy
from dotenv import load_dotenv
from huggingface_hub import hf_hub_download, login
from spacy import Language
from spacy.tokenizer import Tokenizer
from spacy.util import compile_suffix_regex, compile_infix_regex

from src.resources.TEXTS import TEXTS
from src.utils.Event import Schedule
from src.utils.helpers import normalize_data
from src.utils.markdown_processing.CustomMarkdownAnalyzer.MarkdownAnalyzer import MarkdownAnalyzer

load_dotenv()
token = os.getenv("HUGGING_FACE_SPACES_TOKEN")
login(token=token)


placeholder = {
  "DATE_RANGE_TIME_RANGE": "[DATE] [TIME] - [DATE] [TIME]",
  "DATE_RANGE": "[DATE] - [DATE]",
  "DATE_TIME_RANGE": "[DATE] [TIME] - [TIME]",
  "TIME_RANGE": "[TIME] - [TIME]",
  "DATE_TIME": "[DATE] [TIME]",
  "DATE": "[DATE]",
  "TIME": "[TIME]"
}

def convert_to_schedule(date_time, label):
    print("Converting ", date_time, label)
    try:
        if label == "DATE_RANGE_TIME_RANGE":
            return Schedule(
                start_date=datetime.strptime(date_time[0], "%d.%m.%Y").date(),
                end_date=datetime.strptime(date_time[2], "%d.%m.%Y").date(),
                start_time=datetime.strptime(date_time[1], "%H:%M").time(),
                end_time=datetime.strptime(date_time[3], "%H:%M").time(),
                admittance_time=None
            )

        if label == "DATE_RANGE":
            return Schedule(
                start_date=datetime.strptime(date_time[0], "%d.%m.%Y").date(),
                end_date=datetime.strptime(date_time[1], "%d.%m.%Y").date(),
                start_time=None,
                end_time=None,
                admittance_time=None
            )

        if label == "DATE_TIME_RANGE":
            return Schedule(
                start_date=datetime.strptime(date_time[0], "%d.%m.%Y").date(),
                end_date=None,
                start_time=datetime.strptime(date_time[1], "%H:%M").time(),
                end_time=datetime.strptime(date_time[2], "%H:%M").time(),
                admittance_time=None
            )

        if label == "TIME_RANGE":
            return Schedule(
                start_date=None,
                end_date=None,
                start_time=datetime.strptime(date_time[0], "%H:%M").time(),
                end_time=datetime.strptime(date_time[1], "%H:%M").time(),
                admittance_time=None
            )

        if label == "DATE_TIME":
            return Schedule(
                start_date=datetime.strptime(date_time[0], "%d.%m.%Y").date(),
                end_date=None,
                start_time=datetime.strptime(date_time[1], "%H:%M").time(),
                end_time=None,
                admittance_time=None
            )

        if label == "DATE":
            return Schedule(
                start_date=datetime.strptime(date_time, "%d.%m.%Y").date(),
                end_date=None,
                start_time=None,
                end_time=None,
                admittance_time=None
            )

        if label == "TIME":
            return Schedule(
                start_date=None,
                end_date=None,
                start_time=datetime.strptime(date_time, "%H:%M").time(),
                end_time=None,
                admittance_time=None
            )
    except Exception as e:
        print(e)
        return None

def _load_classifier(repo_id, model_name):
    return joblib.load(
        hf_hub_download(repo_id=repo_id, filename=model_name + ".pkl")
    )

def classify_date_time(date_times, label, text):
    # Text anhand des Platzhalters [LABEL] in Segmente teilen
    segments = text.split(f"[{label}]")
    tokens = []
    # print(date_times)
    date_time_positions = []
    for i, segment in enumerate(segments):
        tokens.extend(segment.split())  # Segment als Token hinzufügen
        if i < len(date_times):  # Falls noch Date-Times übrig sind
            tokens.append(placeholder.get(label, "ERROR"))  # Date-Time als eigenes Token einfügen
            date_time_positions.append(len(tokens)-1)

    # print("TOKENS:", tokens)
    # print(date_time_positions)
    # print(len(date_time_positions)==len(date_times))


    # sliding window classification
    window_size = 5
    event_date_total = 0
    other_total = 0


    schedules = []
    for i, date_time in enumerate(date_times):
        # Berechne den Start-Index für das Fenster
        start = max(0, date_time_positions[i] - (window_size - 1))

        # Führe Klassifikation für jedes Fenster durch
        while start + window_size <= len(tokens):  # Solange das Fenster in den Tokens bleibt
            window = tokens[start:start + window_size]
            # print(window)

            # Klassifikation durchführen
            if label == "TIME":
                time_class = time_classifier(" ".join(window))
                # print(time_class)
            else:
                date_class = date_classifier(" ".join(window))
                # print(date_class)

                # Aufaddieren der Werte
                event_date_total += date_class.get('EVENT_DATE', 0)
                other_total += date_class.get('OTHER', 0)

            # Fenster verschieben
            start += 1

        # Rückgabe der Gesamtsummen
        if label == "TIME":
            pass
        else:
            # print("Gesamtsumme EVENT_DATE:", event_date_total)
            # print("Gesamtsumme OTHER:", other_total)
            if event_date_total > other_total:

                schedule = convert_to_schedule(date_time, label)
                schedules.append(schedule)
                # print(date_time)
                # print("EVENT DATE: ", schedule)
    return schedules

try:
    date_classifier = _load_classifier("adojode/date_classifier", "date_classifier")
    time_classifier = _load_classifier("adojode/time_classifier", "time_classifier")
except Exception as e:
    print("Error loading classifier models from hugging face: ", e)



def extract_schedules(text):
    try:
        normalized = normalize_data(text)
        # print("*"*100)
        # print(normalized)
        # print("*"*100)
        cleaned = re.sub(r"\*", " ", normalized)
        cleaned = re.sub(r"=", " ", cleaned)
        cleaned = re.sub(r"#", " ", cleaned)
        cleaned = re.sub(r"(-|—|–|bis)", "-", cleaned)
        cleaned = re.sub(r"(und|sowie)", "+", cleaned)
        # cleaned = re.sub( r"\b(?:mo|di|mi|do|fr|sa|so|montag|dienstag|mittwoch|donnerstag|freitag|samstag|sonntag)(?:s?)\b",
        #                  " ", cleaned, flags=re.IGNORECASE)

        cleaned = re.sub(r"(von|vom|am|um|ab)", " ", cleaned, flags=re.IGNORECASE)
        cleaned = re.sub(r",", " ", cleaned)
        cleaned = re.sub(r"\|", " ", cleaned)
        cleaned = re.sub(r"\s+", " ", cleaned)


        matches = {}

        # Match für das Datum und die Zeit mit einer Zeitspanne
        date_range_time_range_pattern = r"(\d{2}\.\d{2}\.\d{4})\s*(\d{2}:\d{2})\s*-\s*(\d{2}\.\d{2}\.\d{4})\s*(\d{2}:\d{2})"
        match = re.findall(date_range_time_range_pattern, cleaned)
        if match:
            matches["DATE_RANGE_TIME_RANGE"] = match
        # print("DATE_RANGE_TIME_RANGE matches:", matches["DATE_RANGE_TIME_RANGE"])
        cleaned = re.sub(date_range_time_range_pattern, "[DATE_RANGE_TIME_RANGE]", cleaned)

        # Match für das Datum mit einem Zeitraum ohne Zeitangabe
        date_range_pattern = r"(\d{2}\.\d{2}\.\d{4})\s*-\s*(\d{2}\.\d{2}\.\d{4})"
        match = re.findall(date_range_pattern, cleaned)
        if match:
            matches["DATE_RANGE"] = match
        # print("DATE_RANGE matches:", matches["DATE_RANGE"])
        cleaned = re.sub(date_range_pattern, "[DATE_RANGE]", cleaned)

        # Match für das Datum mit einer Zeitspanne ohne Start- und Enddatum
        date_time_range_pattern = r"(\d{2}\.\d{2}\.\d{4})\s*(\d{2}:\d{2})\s*-\s*(\d{2}:\d{2})"
        match = re.findall(date_time_range_pattern, cleaned)
        if match:
            matches["DATE_TIME_RANGE"] = match
        # print("DATE_TIME_RANGE matches:", matches["DATE_TIME_RANGE"])
        cleaned = re.sub(date_time_range_pattern, "[DATE_TIME_RANGE]", cleaned)

        # Match für eine reine Zeitspanne ohne Datum
        time_range_pattern = r"(\d{2}:\d{2})\s*-\s*(\d{2}:\d{2})"
        match = re.findall(time_range_pattern, cleaned)
        if match:
            matches["TIME_RANGE"] = match
        # print("TIME_RANGE matches:", matches["TIME_RANGE"])
        cleaned = re.sub(time_range_pattern, "[TIME_RANGE]", cleaned)

        # Match für Datum mit Zeitangabe
        date_time_pattern = r"(\d{2}\.\d{2}\.\d{4})\s*(\d{2}:\d{2})"
        match = re.findall(date_time_pattern, cleaned)
        if match:
            matches["DATE_TIME"] = match
        # print("DATE_TIME matches:", matches["DATE_TIME"])
        cleaned = re.sub(date_time_pattern, "[DATE_TIME]", cleaned)

        date_pattern = r"(\d{2}\.\d{2}\.\d{4})"
        match = re.findall(date_pattern, cleaned)
        if match:
            matches["DATE"] = match
        # print("DATE matches:", matches["DATE"])
        cleaned = re.sub(date_pattern, "[DATE]", cleaned)

        time_pattern = r"(\d{2}:\d{2})"
        match = re.findall(time_pattern, cleaned)
        if match:
            matches["TIME"] = match
        # print("TIME matches:", matches["TIME"])
        cleaned = re.sub(time_pattern, "[TIME]", cleaned)


        event_schedules = []

        # return date_time if only one found
        if len(matches)==1:
            key, value = next(iter(matches.items()))

            event_schedules.append(convert_to_schedule(label=key,date_time=value[0]))
            return event_schedules


        for key, value in matches.items():
            # print(f"{key}: {value}")
            schedules = classify_date_time(date_times=value, label=key, text=cleaned)
            if schedules:
                event_schedules.extend(schedules)


        if len(event_schedules)==1:
            return event_schedules


        print(event_schedules)
        unique_schedules = []
        for i, schedule in enumerate(event_schedules):
            if any(schedule in other for j, other in enumerate(event_schedules) if
                   i != j):
                continue
            unique_schedules.append(schedule)
        return unique_schedules

    except Exception as ex:
        print(ex)


# TEXTS = ["\n\nTermin für öffentliche Besichtigung\n=================================== \n\n07.01.2025\n\n * Am 07.01.2025\n* Von 18:00 bis 19:00 Uhr\n* Tasköprüstraße 10 (ehemalige Selgros-Markthalle)\n* Termin im Kalender speichern\n"]


for text in TEXTS:
    print(text)
    schedules = extract_schedules(text)
    print("*" * 100)
    print("EXTRACTED SCHEDULES: ")
    print(schedules)
    print("*" * 100)