File size: 837 Bytes
da88570 56abaa1 da88570 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
# https://blog.knowledgator.com/meet-the-new-zero-shot-ner-architecture-30ffc2cb1ee0
# https://labelstud.io/blog/fine-tuning-generalist-models-for-named-entity-recognition/
import psutil
from gliner import GLiNER
import streamlit as st
LABELS = ["eventTitle", "eventLocation", "date", "time", "street", "city"]
class GlinerHandler:
def __init__(self, model_name="urchade/gliner_multi-v2.1"):
self.model = GLiNER.from_pretrained(model_name)
st.info("Using NER Model Gliner")
def extract_entities(self, text, labels=None, threshold=0.3):
if labels is None:
labels = LABELS
entities = self.model.predict_entities(text, labels, threshold=threshold)
return entities
# gliner = GlinerHandler()
# entities = gliner.extract_entities("Test 20.03.10, In Nürnberg")
# print(entities) |