File size: 9,666 Bytes
da88570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import spacy
from datasets import load_dataset
from sentence_transformers import SentenceTransformer

from bertopic import BERTopic
from bertopic.representation import KeyBERTInspired
from sklearn.feature_extraction.text import CountVectorizer
from umap import UMAP
from sklearn.metrics.pairwise import cosine_similarity

from src.nlp.experimental.topic_modeling_data import DATA
from src.nlp.playground.textsummarization import SumySummarizer
import webbrowser


stop_words = ["a","ab","aber","ach","acht","achte","achten","achter","achtes","ag","alle","allein","allem","allen","aller","allerdings","alles","allgemeinen","als","also","am","an","ander","andere","anderem","anderen","anderer","anderes","anderm","andern","anderr","anders","au","auch","auf","aus","ausser","ausserdem","außer","außerdem","b","bald","bei","beide","beiden","beim","beispiel","bekannt","bereits","besonders","besser","besten","bin","bis","bisher","bist","c","d","d.h","da","dabei","dadurch","dafür","dagegen","daher","dahin","dahinter","damals","damit","danach","daneben","dank","dann","daran","darauf","daraus","darf","darfst","darin","darum","darunter","darüber","das","dasein","daselbst","dass","dasselbe","davon","davor","dazu","dazwischen","daß","dein","deine","deinem","deinen","deiner","deines","dem","dementsprechend","demgegenüber","demgemäss","demgemäß","demselben","demzufolge","den","denen","denn","denselben","der","deren","derer","derjenige","derjenigen","dermassen","dermaßen","derselbe","derselben","des","deshalb","desselben","dessen","deswegen","dich","die","diejenige","diejenigen","dies","diese","dieselbe","dieselben","diesem","diesen","dieser","dieses","dir","doch","dort","drei","drin","dritte","dritten","dritter","drittes","du","durch","durchaus","durfte","durften","dürfen","dürft","e","eben","ebenso","ehrlich","ei","ei,","eigen","eigene","eigenen","eigener","eigenes","ein","einander","eine","einem","einen","einer","eines","einig","einige","einigem","einigen","einiger","einiges","einmal","eins","elf","en","ende","endlich","entweder","er","ernst","erst","erste","ersten","erster","erstes","es","etwa","etwas","euch","euer","eure","eurem","euren","eurer","eures","f","folgende","früher","fünf","fünfte","fünften","fünfter","fünftes","für","g","gab","ganz","ganze","ganzen","ganzer","ganzes","gar","gedurft","gegen","gegenüber","gehabt","gehen","geht","gekannt","gekonnt","gemacht","gemocht","gemusst","genug","gerade","gern","gesagt","geschweige","gewesen","gewollt","geworden","gibt","ging","gleich","gott","gross","grosse","grossen","grosser","grosses","groß","große","großen","großer","großes","gut","gute","guter","gutes","h","hab","habe","haben","habt","hast","hat","hatte","hatten","hattest","hattet","heisst","her","heute","hier","hin","hinter","hoch","hätte","hätten","i","ich","ihm","ihn","ihnen","ihr","ihre","ihrem","ihren","ihrer","ihres","im","immer","in","indem","infolgedessen","ins","irgend","ist","j","ja","jahr","jahre","jahren","je","jede","jedem","jeden","jeder","jedermann","jedermanns","jedes","jedoch","jemand","jemandem","jemanden","jene","jenem","jenen","jener","jenes","jetzt","k","kam","kann","kannst","kaum","kein","keine","keinem","keinen","keiner","keines","kleine","kleinen","kleiner","kleines","kommen","kommt","konnte","konnten","kurz","können","könnt","könnte","l","lang","lange","leicht","leide","lieber","los","m","machen","macht","machte","mag","magst","mahn","mal","man","manche","manchem","manchen","mancher","manches","mann","mehr","mein","meine","meinem","meinen","meiner","meines","mensch","menschen","mich","mir","mit","mittel","mochte","mochten","morgen","muss","musst","musste","mussten","muß","mußt","möchte","mögen","möglich","mögt","müssen","müsst","müßt","n","na","nach","nachdem","nahm","natürlich","neben","nein","neue","neuen","neun","neunte","neunten","neunter","neuntes","nicht","nichts","nie","niemand","niemandem","niemanden","noch","nun","nur","o","ob","oben","oder","offen","oft","ohne","ordnung","p","q","r","recht","rechte","rechten","rechter","rechtes","richtig","rund","s","sa","sache","sagt","sagte","sah","satt","schlecht","schluss","schon","sechs","sechste","sechsten","sechster","sechstes","sehr","sei","seid","seien","sein","seine","seinem","seinen","seiner","seines","seit","seitdem","selbst","sich","sie","sieben","siebente","siebenten","siebenter","siebentes","sind","so","solang","solche","solchem","solchen","solcher","solches","soll","sollen","sollst","sollt","sollte","sollten","sondern","sonst","soweit","sowie","später","startseite","statt","steht","suche","t","tag","tage","tagen","tat","teil","tel","tritt","trotzdem","tun","u","uhr","um","und","uns","unse","unsem","unsen","unser","unsere","unserer","unses","unter","v","vergangenen","viel","viele","vielem","vielen","vielleicht","vier","vierte","vierten","vierter","viertes","vom","von","vor","w","wahr","wann","war","waren","warst","wart","warum","was","weg","wegen","weil","weit","weiter","weitere","weiteren","weiteres","welche","welchem","welchen","welcher","welches","wem","wen","wenig","wenige","weniger","weniges","wenigstens","wenn","wer","werde","werden","werdet","weshalb","wessen","wie","wieder","wieso","will","willst","wir","wird","wirklich","wirst","wissen","wo","woher","wohin","wohl","wollen","wollt","wollte","wollten","worden","wurde","wurden","während","währenddem","währenddessen","wäre","würde","würden","x","y","z","z.b","zehn","zehnte","zehnten","zehnter","zehntes","zeit","zu","zuerst","zugleich","zum","zunächst","zur","zurück","zusammen","zwanzig","zwar","zwei","zweite","zweiten","zweiter","zweites","zwischen","zwölf","über","überhaupt","übrigens","wann", "wo", "datum", "kalender", "termin", "veranstaltungsort",
    "eintritt", "uhr", "tickets", "datum", "termin", "termine", "veranstaltung","veranstaltungen"
    "am", "um", "bis", "ab", "von", "mit", "mehr",
              "Januar", "Februar", "März", "April", "Mai", "Juni",
              "Juli", "August", "September", "Oktober", "November", "Dezember",
              "Montag", "Dienstag", "Mittwoch", "Donnerstag", "Freitag", "Samstag", "Sonntag"
              ]

data = DATA
print(len(data))

summarizer = SumySummarizer()

data = [" ".join(summarizer.summarize(d)) for d in data]

# Preprocessing: Remove entities, and all tokens that include other characters that letters, except for "-"
nlp = spacy.load("de_core_news_sm")

# cleaned_docs = []
# for doc in data:
#     doc_spacy = nlp(doc)
#
#     cleaned_doc = " ".join([token.text for token in doc_spacy
#                             if token.ent_type_ == ""
#                             and len(token.text) > 2
#                             and (token.is_alpha or '-' in token.text)])
#
#     cleaned_docs.append(cleaned_doc)
#
# for i, cleaned in enumerate(cleaned_docs):
#     print(f"Bereinigtes Dokument {i+1}: {cleaned}")

# We select a subsample of 5000 abstracts from ArXiv
# docs = cleaned_docs

docs = data
embedding_model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
# matryoshka_dim = 512
# embedding_model = SentenceTransformer("aari1995/German_Semantic_V3", trust_remote_code=True, truncate_dim=matryoshka_dim)
embeddings = embedding_model.encode(docs,batch_size=256, show_progress_bar=True)
vectorizer_model = CountVectorizer(stop_words=stop_words, max_features=10000)

# We define a number of topics that we know are in the documents
zeroshot_topic_list = [
    "Ausstellung",
    "Charity-Event",
    "Comedy",
    "Dinner-Show",
    "Dokumentation",
    "Eröffnung",
    "Familie",
    "Feier",
    "Filmfestival",
    "Filmvorführung",
    "Gaming",
    "Gesprächsabend",
    "Gottesdienst",
    "Infoveranstaltung",
    "Kabarett",
    "Kinder",
    "Kochkurs",
    "Konferenz",
    "Konzert",
    "Kultur",
    "Kunst",
    "Lesung",
    "Markt",
    "Messe",
    "Modenschau",
    "Museum",
    "Musical",
    "Onlinekurs",
    "Oper",
    "Party",
    "Performance",
    "Religion",
    "Seminar",
    "Sport",
    "Startup",
    "Tanz",
    "Tech",
    "Theater",
    "Vortrag",
    "Webinar",
    "Workshop"
]

# We fit our model using the zero-shot topics
# and we define a minimum similarity. For each document,
# if the similarity does not exceed that value, it will be used
# for clustering instead.
topic_model = BERTopic(
    language="de",
    embedding_model=embedding_model,
    min_topic_size=5,
    zeroshot_topic_list=zeroshot_topic_list,
    zeroshot_min_similarity=.85,
    representation_model=KeyBERTInspired(),
    vectorizer_model=vectorizer_model,
    verbose=True,
)


topic_model = topic_model.fit(docs)

topic_distr, _ = topic_model.approximate_distribution(docs)
fig = topic_model.visualize_distribution(topic_distr[1])
print(fig)
fig.write_html("plot.html")
webbrowser.open("plot.html")
# topics, _ = topic_model.fit_transform(docs,embeddings)
#
# fig = topic_model.visualize_topics()
# topic_info = topic_model.get_topic_info()
# topic_info.to_html("topic_info.html")
# fig.show()
#
#
#
# docs_and_topics = list(zip(docs, topics))
#
# # Sortieren nach topic
# docs_and_topics.sort(key=lambda x: x[1])
#
# # Durchlaufen der sortierten Liste und Ausgeben der Dokumente nach Topic
# current_topic = None
# for doc, topic in docs_and_topics:
#     if topic != current_topic:
#         # Neues Topic gefunden, Ausgabe des Themas
#         current_topic = topic
#         print(f"\nTopic: {topic} {topic_model.get_topic(topic)}")
#     print(f"→ Dokument: {doc}")





# reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings)
# topic_model.visualize_documents(docs, reduced_embeddings=reduced_embeddings)