Spaces:
Sleeping
Sleeping
File size: 1,471 Bytes
b0a50ec 0105482 b0a50ec 0105482 b0a50ec 0105482 aba0e7d 0105482 aba0e7d b0a50ec 0105482 aba0e7d 0105482 b0a50ec 0105482 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import whisper
import gradio as gr
import subprocess
from autocorrect import Speller
# Load the Whisper model
model = whisper.load_model("large")
# Initialize autocorrect for Urdu
spell = Speller(lang='ur') # Set the language for Urdu
def transcribe_video(video_path):
try:
# Extract audio from the uploaded video
audio_path = "audio.wav"
subprocess.run(
["ffmpeg", "-i", video_path, "-ar", "16000", "-ac", "1", "-c:a", "pcm_s16le", audio_path],
check=True
)
# Transcribe the audio in Urdu
result = model.transcribe(audio_path, task="transcribe", language="ur")
transcribed_text = result["text"]
# Correct the transcribed text using autocorrect
corrected_text = spell(transcribed_text)
return corrected_text
except FileNotFoundError:
return "Error: ffmpeg is not installed or not found in the environment."
except Exception as e:
return f"An error occurred: {e}"
# Create the Gradio interface
interface = gr.Interface(
fn=transcribe_video,
inputs=gr.Video(label="Upload your Urdu-speaking video"),
outputs=gr.Textbox(label="Corrected Transcribed Text"),
title="Urdu Video Transcription with Correction",
description="Upload a video file in Urdu, and this app will transcribe the speech and correct the text using Whisper and autocorrect.",
)
# Launch the app
if __name__ == "__main__":
interface.launch()
|