File size: 15,987 Bytes
5c0d66f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Neural Network Catalog</title>
    <script src="https://cdn.tailwindcss.com"></script>
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
    <style>
        .gradient-bg {
            background: linear-gradient(135deg, #6e8efb, #a777e3);
        }
        .network-card:hover {
            transform: translateY(-5px);
            box-shadow: 0 20px 25px -5px rgba(0, 0, 0, 0.1), 0 10px 10px -5px rgba(0, 0, 0, 0.04);
        }
        .network-card {
            transition: all 0.3s ease;
        }
        .tag {
            transition: all 0.2s ease;
        }
        .tag:hover {
            transform: scale(1.05);
        }
        .search-input:focus {
            box-shadow: 0 0 0 3px rgba(110, 142, 251, 0.3);
        }
        .type-filter.active {
            background-color: #6e8efb;
            color: white;
        }
    </style>
</head>
<body class="bg-gray-50 min-h-screen">
    <!-- Header -->
    <header class="gradient-bg text-white shadow-lg">
        <div class="container mx-auto px-4 py-6">
            <div class="flex justify-between items-center">
                <div class="flex items-center space-x-2">
                    <i class="fas fa-brain text-3xl"></i>
                    <h1 class="text-2xl font-bold">Neural Network Catalog</h1>
                </div>
                <div class="hidden md:flex space-x-4">
                    <a href="#" class="hover:underline">Home</a>
                    <a href="#" class="hover:underline">About</a>
                    <a href="#" class="hover:underline">Contribute</a>
                </div>
                <button class="md:hidden text-2xl">
                    <i class="fas fa-bars"></i>
                </button>
            </div>
        </div>
    </header>

    <!-- Hero Section -->
    <section class="gradient-bg text-white py-16">
        <div class="container mx-auto px-4 text-center">
            <h2 class="text-4xl font-bold mb-4">Explore Powerful Neural Networks</h2>
            <p class="text-xl mb-8 max-w-2xl mx-auto">Discover, compare, and implement state-of-the-art neural network architectures for your projects.</p>
            <div class="max-w-2xl mx-auto relative">
                <input type="text" placeholder="Search for networks (e.g., CNN, Transformer, GAN...)" 
                       class="w-full px-6 py-4 rounded-full text-gray-800 focus:outline-none search-input">
                <button class="absolute right-2 top-2 bg-blue-600 text-white px-4 py-2 rounded-full hover:bg-blue-700">
                    <i class="fas fa-search"></i>
                </button>
            </div>
        </div>
    </section>

    <!-- Main Content -->
    <main class="container mx-auto px-4 py-12">
        <!-- Filters -->
        <div class="mb-8">
            <div class="flex flex-wrap justify-between items-center mb-6">
                <h3 class="text-2xl font-semibold text-gray-800">Featured Networks</h3>
                <div class="flex space-x-2">
                    <button class="px-3 py-1 bg-gray-200 rounded-full text-sm type-filter active" data-type="all">All</button>
                    <button class="px-3 py-1 bg-gray-200 rounded-full text-sm type-filter" data-type="vision">Vision</button>
                    <button class="px-3 py-1 bg-gray-200 rounded-full text-sm type-filter" data-type="nlp">NLP</button>
                    <button class="px-3 py-1 bg-gray-200 rounded-full text-sm type-filter" data-type="generative">Generative</button>
                    <button class="px-3 py-1 bg-gray-200 rounded-full text-sm type-filter" data-type="other">Other</button>
                </div>
            </div>
        </div>

        <!-- Network Grid -->
        <div class="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-3 gap-8" id="network-grid">
            <!-- Network cards will be inserted here by JavaScript -->
        </div>

        <!-- Load More Button -->
        <div class="text-center mt-12">
            <button class="px-6 py-3 bg-blue-600 text-white rounded-lg hover:bg-blue-700 transition" id="load-more">
                Load More Networks
            </button>
        </div>
    </main>

    <!-- Footer -->
    <footer class="bg-gray-800 text-white py-12">
        <div class="container mx-auto px-4">
            <div class="grid grid-cols-1 md:grid-cols-3 gap-8">
                <div>
                    <h4 class="text-xl font-semibold mb-4">Neural Network Catalog</h4>
                    <p class="text-gray-400">Your one-stop resource for discovering and implementing neural networks.</p>
                </div>
                <div>
                    <h4 class="text-xl font-semibold mb-4">Quick Links</h4>
                    <ul class="space-y-2">
                        <li><a href="#" class="text-gray-400 hover:text-white">Documentation</a></li>
                        <li><a href="#" class="text-gray-400 hover:text-white">API Reference</a></li>
                        <li><a href="#" class="text-gray-400 hover:text-white">GitHub</a></li>
                    </ul>
                </div>
                <div>
                    <h4 class="text-xl font-semibold mb-4">Connect</h4>
                    <div class="flex space-x-4">
                        <a href="#" class="text-gray-400 hover:text-white text-2xl"><i class="fab fa-twitter"></i></a>
                        <a href="#" class="text-gray-400 hover:text-white text-2xl"><i class="fab fa-github"></i></a>
                        <a href="#" class="text-gray-400 hover:text-white text-2xl"><i class="fab fa-discord"></i></a>
                    </div>
                </div>
            </div>
            <div class="border-t border-gray-700 mt-8 pt-8 text-center text-gray-400">
                <p>© 2023 Neural Network Catalog. All rights reserved.</p>
            </div>
        </div>
    </footer>

    <!-- JavaScript -->
    <script>
        // Sample network data
        const networks = [
            {
                id: 1,
                name: "ResNet-50",
                type: "vision",
                description: "Deep residual network with 50 layers for image classification.",
                tags: ["CNN", "ImageNet", "Classification"],
                stars: 4.8,
                implementations: ["PyTorch", "TensorFlow", "Keras"],
                paper: "https://arxiv.org/abs/1512.03385"
            },
            {
                id: 2,
                name: "BERT",
                type: "nlp",
                description: "Bidirectional Encoder Representations from Transformers for natural language understanding.",
                tags: ["Transformer", "NLP", "Pre-trained"],
                stars: 4.9,
                implementations: ["HuggingFace", "TensorFlow", "PyTorch"],
                paper: "https://arxiv.org/abs/1810.04805"
            },
            {
                id: 3,
                name: "StyleGAN2",
                type: "generative",
                description: "Generative adversarial network for high-quality image generation with style control.",
                tags: ["GAN", "Image Generation", "Style Transfer"],
                stars: 4.7,
                implementations: ["TensorFlow", "PyTorch"],
                paper: "https://arxiv.org/abs/1912.04958"
            },
            {
                id: 4,
                name: "YOLOv5",
                type: "vision",
                description: "Real-time object detection system with high accuracy and speed.",
                tags: ["Object Detection", "Real-time", "CNN"],
                stars: 4.6,
                implementations: ["PyTorch"],
                paper: "https://arxiv.org/abs/1506.02640"
            },
            {
                id: 5,
                name: "GPT-3",
                type: "nlp",
                description: "Generative Pre-trained Transformer 3 for advanced language tasks.",
                tags: ["Transformer", "Language Model", "OpenAI"],
                stars: 4.9,
                implementations: ["OpenAI API", "PyTorch"],
                paper: "https://arxiv.org/abs/2005.14165"
            },
            {
                id: 6,
                name: "U-Net",
                type: "vision",
                description: "Convolutional network for biomedical image segmentation.",
                tags: ["Segmentation", "Medical Imaging", "CNN"],
                stars: 4.5,
                implementations: ["TensorFlow", "PyTorch", "Keras"],
                paper: "https://arxiv.org/abs/1505.04597"
            }
        ];

        // Function to create network cards
        function createNetworkCards(filterType = 'all') {
            const grid = document.getElementById('network-grid');
            grid.innerHTML = '';

            const filteredNetworks = filterType === 'all' 
                ? networks 
                : networks.filter(network => network.type === filterType);

            filteredNetworks.forEach(network => {
                const card = document.createElement('div');
                card.className = 'network-card bg-white rounded-xl shadow-md overflow-hidden hover:shadow-xl';
                card.innerHTML = `
                    <div class="p-6">
                        <div class="flex justify-between items-start mb-2">
                            <h3 class="text-xl font-bold text-gray-800">${network.name}</h3>
                            <div class="flex items-center text-yellow-500">
                                <i class="fas fa-star"></i>
                                <span class="ml-1 text-gray-700">${network.stars}</span>
                            </div>
                        </div>
                        <p class="text-gray-600 mb-4">${network.description}</p>
                        <div class="flex flex-wrap gap-2 mb-4">
                            ${network.tags.map(tag => `<span class="tag px-2 py-1 bg-blue-100 text-blue-800 text-xs rounded-full">${tag}</span>`).join('')}
                        </div>
                        <div class="mb-4">
                            <h4 class="text-sm font-semibold text-gray-700 mb-1">Implementations:</h4>
                            <div class="flex flex-wrap gap-2">
                                ${network.implementations.map(impl => `<span class="px-2 py-1 bg-gray-100 text-gray-800 text-xs rounded">${impl}</span>`).join('')}
                            </div>
                        </div>
                        <div class="flex justify-between items-center">
                            <a href="${network.paper}" target="_blank" class="text-blue-600 hover:underline text-sm">
                                <i class="fas fa-file-alt mr-1"></i> Research Paper
                            </a>
                            <button class="px-4 py-2 bg-blue-600 text-white rounded-lg hover:bg-blue-700 transition text-sm">
                                Try This Network
                            </button>
                        </div>
                    </div>
                `;
                grid.appendChild(card);
            });
        }

        // Initialize the page with all networks
        document.addEventListener('DOMContentLoaded', () => {
            createNetworkCards();

            // Filter buttons functionality
            document.querySelectorAll('.type-filter').forEach(button => {
                button.addEventListener('click', () => {
                    document.querySelectorAll('.type-filter').forEach(btn => btn.classList.remove('active'));
                    button.classList.add('active');
                    const filterType = button.dataset.type;
                    createNetworkCards(filterType);
                });
            });

            // Search functionality
            document.querySelector('.search-input').addEventListener('input', (e) => {
                const searchTerm = e.target.value.toLowerCase();
                const filtered = networks.filter(network => 
                    network.name.toLowerCase().includes(searchTerm) || 
                    network.description.toLowerCase().includes(searchTerm) ||
                    network.tags.some(tag => tag.toLowerCase().includes(searchTerm))
                );
                
                const grid = document.getElementById('network-grid');
                grid.innerHTML = '';
                
                filtered.forEach(network => {
                    const card = document.createElement('div');
                    card.className = 'network-card bg-white rounded-xl shadow-md overflow-hidden hover:shadow-xl';
                    card.innerHTML = `
                        <div class="p-6">
                            <div class="flex justify-between items-start mb-2">
                                <h3 class="text-xl font-bold text-gray-800">${network.name}</h3>
                                <div class="flex items-center text-yellow-500">
                                    <i class="fas fa-star"></i>
                                    <span class="ml-1 text-gray-700">${network.stars}</span>
                                </div>
                            </div>
                            <p class="text-gray-600 mb-4">${network.description}</p>
                            <div class="flex flex-wrap gap-2 mb-4">
                                ${network.tags.map(tag => `<span class="tag px-2 py-1 bg-blue-100 text-blue-800 text-xs rounded-full">${tag}</span>`).join('')}
                            </div>
                            <div class="mb-4">
                                <h4 class="text-sm font-semibold text-gray-700 mb-1">Implementations:</h4>
                                <div class="flex flex-wrap gap-2">
                                    ${network.implementations.map(impl => `<span class="px-2 py-1 bg-gray-100 text-gray-800 text-xs rounded">${impl}</span>`).join('')}
                                </div>
                            </div>
                            <div class="flex justify-between items-center">
                                <a href="${network.paper}" target="_blank" class="text-blue-600 hover:underline text-sm">
                                    <i class="fas fa-file-alt mr-1"></i> Research Paper
                                </a>
                                <button class="px-4 py-2 bg-blue-600 text-white rounded-lg hover:bg-blue-700 transition text-sm">
                                    Try This Network
                                </button>
                            </div>
                        </div>
                    `;
                    grid.appendChild(card);
                });
            });

            // Load more button functionality
            document.getElementById('load-more').addEventListener('click', () => {
                // In a real app, this would fetch more data from an API
                alert('Loading more networks... This would fetch additional data in a production environment.');
            });
        });
    </script>
<p style="border-radius: 8px; text-align: center; font-size: 12px; color: #fff; margin-top: 16px;position: fixed; left: 8px; bottom: 8px; z-index: 10; background: rgba(0, 0, 0, 0.8); padding: 4px 8px;">Made with <img src="https://enzostvs-deepsite.hf.space/logo.svg" alt="DeepSite Logo" style="width: 16px; height: 16px; vertical-align: middle;display:inline-block;margin-right:3px;filter:brightness(0) invert(1);"><a href="https://enzostvs-deepsite.hf.space" style="color: #fff;text-decoration: underline;" target="_blank" >DeepSite</a> - 🧬 <a href="https://enzostvs-deepsite.hf.space?remix=adminSanderson/test" style="color: #fff;text-decoration: underline;" target="_blank" >Remix</a></p></body>
</html>