Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
from bs4 import BeautifulSoup
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
try:
|
7 |
-
response = requests.get(url)
|
8 |
soup = BeautifulSoup(response.text, "html.parser")
|
9 |
paragraphs = soup.find_all("p")
|
10 |
-
|
11 |
-
|
12 |
-
text = "\n\n".join([p.get_text() for p in paragraphs[:10]])
|
13 |
-
|
14 |
-
# Format text as Markdown
|
15 |
-
markdown_summary = f"## Website Summary\n\n{text}" if text else "No content found."
|
16 |
-
|
17 |
-
return markdown_summary
|
18 |
except Exception as e:
|
19 |
-
return f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
iface = gr.Interface(fn=summarize_website, inputs="text", outputs=gr.Markdown(), title="Website Summarizer")
|
22 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
from bs4 import BeautifulSoup
|
4 |
+
from transformers import pipeline
|
5 |
|
6 |
+
# Load summarization pipeline from Hugging Face
|
7 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
8 |
+
|
9 |
+
def scrape_website(url):
|
10 |
+
"""Extracts text from a website."""
|
11 |
try:
|
12 |
+
response = requests.get(url, timeout=10)
|
13 |
soup = BeautifulSoup(response.text, "html.parser")
|
14 |
paragraphs = soup.find_all("p")
|
15 |
+
text = " ".join([p.get_text() for p in paragraphs])
|
16 |
+
return text if text else "No content found."
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
except Exception as e:
|
18 |
+
return f"Error: {str(e)}"
|
19 |
+
|
20 |
+
def summarize_website(url):
|
21 |
+
"""Scrapes website and summarizes the extracted content."""
|
22 |
+
extracted_text = scrape_website(url)
|
23 |
+
|
24 |
+
if "Error:" in extracted_text or len(extracted_text.split()) < 50:
|
25 |
+
return "Could not extract enough text to summarize."
|
26 |
+
|
27 |
+
# Summarize using Hugging Face model
|
28 |
+
summary = summarizer(extracted_text, max_length=200, min_length=50, do_sample=False)
|
29 |
+
return f"**Summary:**\n\n{summary[0]['summary_text']}"
|
30 |
+
|
31 |
+
# Gradio interface
|
32 |
+
iface = gr.Interface(
|
33 |
+
fn=summarize_website,
|
34 |
+
inputs="text",
|
35 |
+
outputs="markdown",
|
36 |
+
title="AI-Powered Website Summarizer",
|
37 |
+
description="Enter a website URL, and this tool will summarize its content using an AI model."
|
38 |
+
)
|
39 |
|
|
|
40 |
iface.launch()
|