Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
import torch.amp as amp | |
import torch.nn as nn | |
from tqdm import tqdm | |
from .utils import hash_state_dict_keys | |
try: | |
import flash_attn_interface | |
FLASH_ATTN_3_AVAILABLE = True | |
except ModuleNotFoundError: | |
FLASH_ATTN_3_AVAILABLE = False | |
try: | |
import flash_attn | |
FLASH_ATTN_2_AVAILABLE = True | |
except ModuleNotFoundError: | |
FLASH_ATTN_2_AVAILABLE = False | |
try: | |
from sageattention import sageattn | |
SAGE_ATTN_AVAILABLE = True | |
except ModuleNotFoundError: | |
SAGE_ATTN_AVAILABLE = False | |
import warnings | |
__all__ = ['WanModel'] | |
def flash_attention( | |
q, | |
k, | |
v, | |
q_lens=None, | |
k_lens=None, | |
dropout_p=0., | |
softmax_scale=None, | |
q_scale=None, | |
causal=False, | |
window_size=(-1, -1), | |
deterministic=False, | |
dtype=torch.bfloat16, | |
version=None, | |
): | |
""" | |
q: [B, Lq, Nq, C1]. | |
k: [B, Lk, Nk, C1]. | |
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. | |
q_lens: [B]. | |
k_lens: [B]. | |
dropout_p: float. Dropout probability. | |
softmax_scale: float. The scaling of QK^T before applying softmax. | |
causal: bool. Whether to apply causal attention mask. | |
window_size: (left right). If not (-1, -1), apply sliding window local attention. | |
deterministic: bool. If True, slightly slower and uses more memory. | |
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. | |
""" | |
half_dtypes = (torch.float16, torch.bfloat16) | |
assert dtype in half_dtypes | |
assert q.device.type == 'cuda' and q.size(-1) <= 256 | |
# params | |
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype | |
def half(x): | |
return x if x.dtype in half_dtypes else x.to(dtype) | |
# preprocess query | |
if q_lens is None: | |
q = half(q.flatten(0, 1)) | |
q_lens = torch.tensor( | |
[lq] * b, dtype=torch.int32).to( | |
device=q.device, non_blocking=True) | |
else: | |
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)])) | |
# preprocess key, value | |
if k_lens is None: | |
k = half(k.flatten(0, 1)) | |
v = half(v.flatten(0, 1)) | |
k_lens = torch.tensor( | |
[lk] * b, dtype=torch.int32).to( | |
device=k.device, non_blocking=True) | |
else: | |
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)])) | |
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)])) | |
q = q.to(v.dtype) | |
k = k.to(v.dtype) | |
if q_scale is not None: | |
q = q * q_scale | |
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE: | |
warnings.warn( | |
'Flash attention 3 is not available, use flash attention 2 instead.' | |
) | |
# apply attention | |
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE: | |
# Note: dropout_p, window_size are not supported in FA3 now. | |
x = flash_attn_interface.flash_attn_varlen_func( | |
q=q, | |
k=k, | |
v=v, | |
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( | |
0, dtype=torch.int32).to(q.device, non_blocking=True), | |
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( | |
0, dtype=torch.int32).to(q.device, non_blocking=True), | |
seqused_q=None, | |
seqused_k=None, | |
max_seqlen_q=lq, | |
max_seqlen_k=lk, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
deterministic=deterministic)[0].unflatten(0, (b, lq)) | |
elif FLASH_ATTN_2_AVAILABLE: | |
x = flash_attn.flash_attn_varlen_func( | |
q=q, | |
k=k, | |
v=v, | |
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( | |
0, dtype=torch.int32).to(q.device, non_blocking=True), | |
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( | |
0, dtype=torch.int32).to(q.device, non_blocking=True), | |
max_seqlen_q=lq, | |
max_seqlen_k=lk, | |
dropout_p=dropout_p, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
window_size=window_size, | |
deterministic=deterministic).unflatten(0, (b, lq)) | |
elif SAGE_ATTN_AVAILABLE: | |
q = q.unsqueeze(0).transpose(1, 2).to(dtype) | |
k = k.unsqueeze(0).transpose(1, 2).to(dtype) | |
v = v.unsqueeze(0).transpose(1, 2).to(dtype) | |
x = sageattn(q, k, v, dropout_p=dropout_p, is_causal=causal) | |
x = x.transpose(1, 2).contiguous() | |
else: | |
q = q.unsqueeze(0).transpose(1, 2).to(dtype) | |
k = k.unsqueeze(0).transpose(1, 2).to(dtype) | |
v = v.unsqueeze(0).transpose(1, 2).to(dtype) | |
x = torch.nn.functional.scaled_dot_product_attention(q, k, v) | |
x = x.transpose(1, 2).contiguous() | |
# output | |
return x.type(out_dtype) | |
def create_sdpa_mask(q, k, q_lens, k_lens, causal=False): | |
b, lq, lk = q.size(0), q.size(1), k.size(1) | |
if q_lens is None: | |
q_lens = torch.tensor([lq] * b, dtype=torch.int32) | |
if k_lens is None: | |
k_lens = torch.tensor([lk] * b, dtype=torch.int32) | |
attn_mask = torch.zeros((b, lq, lk), dtype=torch.bool) | |
for i in range(b): | |
q_len, k_len = q_lens[i], k_lens[i] | |
attn_mask[i, q_len:, :] = True | |
attn_mask[i, :, k_len:] = True | |
if causal: | |
causal_mask = torch.triu(torch.ones((lq, lk), dtype=torch.bool), diagonal=1) | |
attn_mask[i, :, :] = torch.logical_or(attn_mask[i, :, :], causal_mask) | |
attn_mask = attn_mask.logical_not().to(q.device, non_blocking=True) | |
return attn_mask | |
def attention( | |
q, | |
k, | |
v, | |
q_lens=None, | |
k_lens=None, | |
dropout_p=0., | |
softmax_scale=None, | |
q_scale=None, | |
causal=False, | |
window_size=(-1, -1), | |
deterministic=False, | |
dtype=torch.bfloat16, | |
fa_version=None, | |
): | |
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: | |
return flash_attention( | |
q=q, | |
k=k, | |
v=v, | |
q_lens=q_lens, | |
k_lens=k_lens, | |
dropout_p=dropout_p, | |
softmax_scale=softmax_scale, | |
q_scale=q_scale, | |
causal=causal, | |
window_size=window_size, | |
deterministic=deterministic, | |
dtype=dtype, | |
version=fa_version, | |
) | |
else: | |
if q_lens is not None or k_lens is not None: | |
warnings.warn('Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.') | |
attn_mask = None | |
q = q.transpose(1, 2).to(dtype) | |
k = k.transpose(1, 2).to(dtype) | |
v = v.transpose(1, 2).to(dtype) | |
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) | |
out = out.transpose(1, 2).contiguous() | |
return out | |
def sinusoidal_embedding_1d(dim, position): | |
# preprocess | |
assert dim % 2 == 0 | |
half = dim // 2 | |
position = position.type(torch.float64) | |
# calculation | |
sinusoid = torch.outer( | |
position, torch.pow(10000, -torch.arange(half).to(position).div(half))) | |
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |
return x | |
def rope_params(max_seq_len, dim, theta=10000): | |
assert dim % 2 == 0 | |
freqs = torch.outer( | |
torch.arange(max_seq_len), | |
1.0 / torch.pow(theta, | |
torch.arange(0, dim, 2).to(torch.float64).div(dim))) | |
freqs = torch.polar(torch.ones_like(freqs), freqs) | |
return freqs | |
def rope_apply(x, grid_sizes, freqs): | |
n, c = x.size(2), x.size(3) // 2 | |
# split freqs | |
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) | |
# loop over samples | |
output = [] | |
for i, (f, h, w) in enumerate(grid_sizes.tolist()): | |
seq_len = f * h * w | |
# precompute multipliers | |
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape( | |
seq_len, n, -1, 2)) | |
freqs_i = torch.cat([ | |
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) | |
], | |
dim=-1).reshape(seq_len, 1, -1) | |
# apply rotary embedding | |
x_i = torch.view_as_real(x_i * freqs_i).flatten(2) | |
x_i = torch.cat([x_i, x[i, seq_len:]]) | |
# append to collection | |
output.append(x_i) | |
return torch.stack(output).float() | |
class WanRMSNorm(nn.Module): | |
def __init__(self, dim, eps=1e-5): | |
super().__init__() | |
self.dim = dim | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def forward(self, x): | |
return self._norm(x.float()).type_as(x) * self.weight | |
def _norm(self, x): | |
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) | |
class WanLayerNorm(nn.LayerNorm): | |
def __init__(self, dim, eps=1e-6, elementwise_affine=False): | |
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps) | |
def forward(self, x): | |
return super().forward(x.float()).type_as(x) | |
class WanSelfAttention(nn.Module): | |
def __init__(self, | |
dim, | |
num_heads, | |
window_size=(-1, -1), | |
qk_norm=True, | |
eps=1e-6): | |
assert dim % num_heads == 0 | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.eps = eps | |
# layers | |
self.q = nn.Linear(dim, dim) | |
self.k = nn.Linear(dim, dim) | |
self.v = nn.Linear(dim, dim) | |
self.o = nn.Linear(dim, dim) | |
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
def forward(self, x, seq_lens, grid_sizes, freqs): | |
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
# query, key, value function | |
def qkv_fn(x): | |
q = self.norm_q(self.q(x)).view(b, s, n, d) | |
k = self.norm_k(self.k(x)).view(b, s, n, d) | |
v = self.v(x).view(b, s, n, d) | |
return q, k, v | |
q, k, v = qkv_fn(x) | |
x = flash_attention( | |
q=rope_apply(q, grid_sizes, freqs), | |
k=rope_apply(k, grid_sizes, freqs), | |
v=v, | |
k_lens=seq_lens, | |
window_size=self.window_size) | |
# output | |
x = x.flatten(2) | |
x = self.o(x) | |
return x | |
class WanT2VCrossAttention(WanSelfAttention): | |
def forward(self, x, context, context_lens): | |
""" | |
x: [B, L1, C]. | |
context: [B, L2, C]. | |
context_lens: [B]. | |
""" | |
b, n, d = x.size(0), self.num_heads, self.head_dim | |
# compute query, key, value | |
q = self.norm_q(self.q(x)).view(b, -1, n, d) | |
k = self.norm_k(self.k(context)).view(b, -1, n, d) | |
v = self.v(context).view(b, -1, n, d) | |
# compute attention | |
x = flash_attention(q, k, v, k_lens=context_lens) | |
# output | |
x = x.flatten(2) | |
x = self.o(x) | |
return x | |
class WanI2VCrossAttentionProcessor: | |
def __call__(self, attn, x, context, context_lens) -> torch.Tensor: | |
""" | |
x: [B, L1, C]. | |
context: [B, L2, C]. | |
context_lens: [B]. | |
""" | |
context_img = context[:, :257] | |
context = context[:, 257:] | |
b, n, d = x.size(0), attn.num_heads, attn.head_dim | |
# compute query, key, value | |
q = attn.norm_q(attn.q(x)).view(b, -1, n, d) | |
k = attn.norm_k(attn.k(context)).view(b, -1, n, d) | |
v = attn.v(context).view(b, -1, n, d) | |
k_img = attn.norm_k_img(attn.k_img(context_img)).view(b, -1, n, d) | |
v_img = attn.v_img(context_img).view(b, -1, n, d) | |
img_x = flash_attention(q, k_img, v_img, k_lens=None) | |
# compute attention | |
x = flash_attention(q, k, v, k_lens=context_lens) | |
# output | |
x = x.flatten(2) | |
img_x = img_x.flatten(2) | |
x = x + img_x | |
x = attn.o(x) | |
return x | |
class WanI2VCrossAttention(WanSelfAttention): | |
def __init__(self, | |
dim, | |
num_heads, | |
window_size=(-1, -1), | |
qk_norm=True, | |
eps=1e-6): | |
super().__init__(dim, num_heads, window_size, qk_norm, eps) | |
self.k_img = nn.Linear(dim, dim) | |
self.v_img = nn.Linear(dim, dim) | |
# self.alpha = nn.Parameter(torch.zeros((1, ))) | |
self.norm_k_img = WanRMSNorm( | |
dim, eps=eps) if qk_norm else nn.Identity() | |
processor = WanI2VCrossAttentionProcessor() | |
self.set_processor(processor) | |
def set_processor(self, processor) -> None: | |
self.processor = processor | |
def get_processor(self): | |
return self.processor | |
def forward(self, x, context, context_lens, audio_proj, audio_context_lens, latents_num_frames, audio_scale: float = 1.0, **kwargs): | |
""" | |
x: [B, L1, C]. | |
context: [B, L2, C]. | |
context_lens: [B]. | |
""" | |
if audio_proj is None: | |
return self.processor(self, x, context, context_lens) | |
else: | |
return self.processor(self, x, context, context_lens, audio_proj, audio_context_lens, latents_num_frames, audio_scale) | |
WANX_CROSSATTENTION_CLASSES = { | |
't2v_cross_attn': WanT2VCrossAttention, | |
'i2v_cross_attn': WanI2VCrossAttention, | |
} | |
class WanAttentionBlock(nn.Module): | |
def __init__(self, | |
cross_attn_type, | |
dim, | |
ffn_dim, | |
num_heads, | |
window_size=(-1, -1), | |
qk_norm=True, | |
cross_attn_norm=False, | |
eps=1e-6): | |
super().__init__() | |
self.dim = dim | |
self.ffn_dim = ffn_dim | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.cross_attn_norm = cross_attn_norm | |
self.eps = eps | |
# layers | |
self.norm1 = WanLayerNorm(dim, eps) | |
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, | |
eps) | |
self.norm3 = WanLayerNorm( | |
dim, eps, | |
elementwise_affine=True) if cross_attn_norm else nn.Identity() | |
self.cross_attn = WANX_CROSSATTENTION_CLASSES[cross_attn_type]( | |
dim, num_heads, (-1, -1), qk_norm, eps) | |
self.norm2 = WanLayerNorm(dim, eps) | |
self.ffn = nn.Sequential( | |
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'), | |
nn.Linear(ffn_dim, dim)) | |
# modulation | |
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) | |
def forward( | |
self, | |
x, | |
e, | |
seq_lens, | |
grid_sizes, | |
freqs, | |
context, | |
context_lens, | |
**kwargs, | |
): | |
assert e.dtype == torch.float32 | |
with amp.autocast(dtype=torch.float32, device_type="cuda"): | |
e = (self.modulation.to(dtype=e.dtype, device=e.device) + e).chunk(6, dim=1) | |
assert e[0].dtype == torch.float32 | |
# self-attention | |
y = self.self_attn( | |
self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes, | |
freqs) | |
with amp.autocast(dtype=torch.float32, device_type="cuda"): | |
x = x + y * e[2] | |
# cross-attention & ffn function | |
def cross_attn_ffn(x, context, context_lens, e, **kwargs): | |
x = x + self.cross_attn(self.norm3(x), context, context_lens, **kwargs) | |
y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3]) | |
with amp.autocast(dtype=torch.float32, device_type="cuda"): | |
x = x + y * e[5] | |
return x | |
x = cross_attn_ffn(x, context, context_lens, e, **kwargs) | |
return x | |
class Head(nn.Module): | |
def __init__(self, dim, out_dim, patch_size, eps=1e-6): | |
super().__init__() | |
self.dim = dim | |
self.out_dim = out_dim | |
self.patch_size = patch_size | |
self.eps = eps | |
# layers | |
out_dim = math.prod(patch_size) * out_dim | |
self.norm = WanLayerNorm(dim, eps) | |
self.head = nn.Linear(dim, out_dim) | |
# modulation | |
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) | |
def forward(self, x, e): | |
assert e.dtype == torch.float32 | |
with amp.autocast(dtype=torch.float32, device_type="cuda"): | |
e = (self.modulation.to(dtype=e.dtype, device=e.device) + e.unsqueeze(1)).chunk(2, dim=1) | |
x = (self.head(self.norm(x) * (1 + e[1]) + e[0])) | |
return x | |
class MLPProj(torch.nn.Module): | |
def __init__(self, in_dim, out_dim): | |
super().__init__() | |
self.proj = torch.nn.Sequential( | |
torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim), | |
torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim), | |
torch.nn.LayerNorm(out_dim)) | |
def forward(self, image_embeds): | |
clip_extra_context_tokens = self.proj(image_embeds) | |
return clip_extra_context_tokens | |
class WanModel(nn.Module): | |
def __init__(self, | |
model_type='t2v', | |
patch_size=(1, 2, 2), | |
text_len=512, | |
in_dim=16, | |
dim=2048, | |
ffn_dim=8192, | |
freq_dim=256, | |
text_dim=4096, | |
out_dim=16, | |
num_heads=16, | |
num_layers=32, | |
window_size=(-1, -1), | |
qk_norm=True, | |
cross_attn_norm=False, | |
eps=1e-6): | |
super().__init__() | |
assert model_type in ['t2v', 'i2v'] | |
self.model_type = model_type | |
self.patch_size = patch_size | |
self.text_len = text_len | |
self.in_dim = in_dim | |
self.dim = dim | |
self.ffn_dim = ffn_dim | |
self.freq_dim = freq_dim | |
self.text_dim = text_dim | |
self.out_dim = out_dim | |
self.num_heads = num_heads | |
self.num_layers = num_layers | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.cross_attn_norm = cross_attn_norm | |
self.eps = eps | |
# embeddings | |
self.patch_embedding = nn.Conv3d( | |
in_dim, dim, kernel_size=patch_size, stride=patch_size) | |
self.text_embedding = nn.Sequential( | |
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'), | |
nn.Linear(dim, dim)) | |
self.time_embedding = nn.Sequential( | |
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6)) | |
# blocks | |
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn' | |
self.blocks = nn.ModuleList([ | |
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, | |
window_size, qk_norm, cross_attn_norm, eps) | |
for _ in range(num_layers) | |
]) | |
# head | |
self.head = Head(dim, out_dim, patch_size, eps) | |
# buffers (don't use register_buffer otherwise dtype will be changed in to()) | |
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 | |
d = dim // num_heads | |
self.freqs = torch.cat([ | |
rope_params(1024, d - 4 * (d // 6)), | |
rope_params(1024, 2 * (d // 6)), | |
rope_params(1024, 2 * (d // 6)) | |
], | |
dim=1) | |
if model_type == 'i2v': | |
self.img_emb = MLPProj(1280, dim) | |
# initialize weights | |
self.init_weights() | |
def forward( | |
self, | |
x, | |
timestep, | |
context, | |
seq_len, | |
clip_fea=None, | |
y=None, | |
use_gradient_checkpointing=False, | |
audio_proj=None, | |
audio_context_lens=None, | |
latents_num_frames=None, | |
audio_scale=1.0, | |
**kwargs, | |
): | |
""" | |
x: A list of videos each with shape [C, T, H, W]. | |
t: [B]. | |
context: A list of text embeddings each with shape [L, C]. | |
""" | |
if self.model_type == 'i2v': | |
assert clip_fea is not None and y is not None | |
# params | |
device = x[0].device | |
if self.freqs.device != device: | |
self.freqs = self.freqs.to(device) | |
if y is not None: | |
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] | |
# embeddings | |
x = [self.patch_embedding(u.unsqueeze(0)) for u in x] | |
grid_sizes = torch.stack( | |
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) # [B,2] | |
x = [u.flatten(2).transpose(1, 2) for u in x] # [[C, L, T],,] | |
# print(f"x0.shape:{x[0].shape}") | |
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) | |
assert seq_lens.max() <= seq_len | |
x = torch.cat([ | |
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], | |
dim=1) for u in x | |
]) | |
# time embeddings | |
with amp.autocast(dtype=torch.float32, device_type="cuda"): | |
e = self.time_embedding( | |
sinusoidal_embedding_1d(self.freq_dim, timestep).float()) | |
e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
assert e.dtype == torch.float32 and e0.dtype == torch.float32 | |
# context | |
context_lens = None | |
context = self.text_embedding( | |
torch.stack([ | |
torch.cat( | |
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) | |
for u in context | |
])) | |
if clip_fea is not None: | |
context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
context = torch.concat([context_clip, context], dim=1) | |
# arguments | |
kwargs = dict( | |
e=e0, | |
seq_lens=seq_lens, | |
grid_sizes=grid_sizes, | |
freqs=self.freqs, | |
context=context, | |
context_lens=context_lens, | |
audio_proj=audio_proj, | |
audio_context_lens=audio_context_lens, | |
latents_num_frames=latents_num_frames, | |
audio_scale=audio_scale) | |
def create_custom_forward(module): | |
def custom_forward(*inputs, **kwargs): | |
return module(*inputs, **kwargs) | |
return custom_forward | |
for block in self.blocks: | |
if self.training and use_gradient_checkpointing: | |
x = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
x, **kwargs, | |
use_reentrant=False, | |
) | |
else: | |
x = block(x, **kwargs) | |
# head | |
x = self.head(x, e) | |
# unpatchify | |
x = self.unpatchify(x, grid_sizes) | |
x = torch.stack(x).float() | |
return x | |
def unpatchify(self, x, grid_sizes): | |
c = self.out_dim | |
out = [] | |
for u, v in zip(x, grid_sizes.tolist()): | |
u = u[:math.prod(v)].view(*v, *self.patch_size, c) | |
u = torch.einsum('fhwpqrc->cfphqwr', u) | |
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)]) | |
out.append(u) | |
return out | |
def init_weights(self): | |
# basic init | |
for m in self.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
# init embeddings | |
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) | |
for m in self.text_embedding.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, std=.02) | |
for m in self.time_embedding.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, std=.02) | |
# init output layer | |
nn.init.zeros_(self.head.head.weight) | |
def state_dict_converter(): | |
return WanModelStateDictConverter() | |
def attn_processors(self): #copy from https://github.com/XLabs-AI/x-flux/blob/main/src/flux/model.py | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors): | |
if hasattr(module, "set_processor"): | |
processors[f"{name}.processor"] = module.processor | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
def set_attn_processor(self, processor): | |
r""" copy from https://github.com/XLabs-AI/x-flux/blob/main/src/flux/model.py | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
class WanModelStateDictConverter: | |
def __init__(self): | |
pass | |
def from_diffusers(self, state_dict): | |
return state_dict | |
def from_civitai(self, state_dict): | |
if hash_state_dict_keys(state_dict) == "9269f8db9040a9d860eaca435be61814": | |
config = { | |
"model_type": "t2v", | |
"patch_size": (1, 2, 2), | |
"text_len": 512, | |
"in_dim": 16, | |
"dim": 1536, | |
"ffn_dim": 8960, | |
"freq_dim": 256, | |
"text_dim": 4096, | |
"out_dim": 16, | |
"num_heads": 12, | |
"num_layers": 30, | |
"window_size": (-1, -1), | |
"qk_norm": True, | |
"cross_attn_norm": True, | |
"eps": 1e-6, | |
} | |
elif hash_state_dict_keys(state_dict) == "aafcfd9672c3a2456dc46e1cb6e52c70": | |
config = { | |
"model_type": "t2v", | |
"patch_size": (1, 2, 2), | |
"text_len": 512, | |
"in_dim": 16, | |
"dim": 5120, | |
"ffn_dim": 13824, | |
"freq_dim": 256, | |
"text_dim": 4096, | |
"out_dim": 16, | |
"num_heads": 40, | |
"num_layers": 40, | |
"window_size": (-1, -1), | |
"qk_norm": True, | |
"cross_attn_norm": True, | |
"eps": 1e-6, | |
} | |
elif hash_state_dict_keys(state_dict) == "6bfcfb3b342cb286ce886889d519a77e": | |
config = { | |
"model_type": "i2v", | |
"patch_size": (1, 2, 2), | |
"text_len": 512, | |
"in_dim": 36, | |
"dim": 5120, | |
"ffn_dim": 13824, | |
"freq_dim": 256, | |
"text_dim": 4096, | |
"out_dim": 16, | |
"num_heads": 40, | |
"num_layers": 40, | |
"window_size": (-1, -1), | |
"qk_norm": True, | |
"cross_attn_norm": True, | |
"eps": 1e-6, | |
} | |
else: | |
config = {} | |
return state_dict, config | |