File size: 7,685 Bytes
e96849b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ebd13
 
 
e96849b
 
 
d8ebd13
e96849b
d8ebd13
e96849b
d8ebd13
e96849b
 
 
 
 
 
d8ebd13
e96849b
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ebd13
e96849b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ebd13
e96849b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
 
d8ebd13
e96849b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
 
 
d8ebd13
e96849b
d8ebd13
e96849b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import json
import logging
from typing import List, Dict, Tuple, Optional, Any
from dataclasses import dataclass
from abc import ABC, abstractmethod
from huggingface_hub import HfApi, InferenceApi
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

@dataclass
class ProjectConfig:
    name: str
    description: str
    technologies: List[str]
    structure: Dict[str, List[str]]

class WebDevelopmentTool(ABC):
    def __init__(self, name: str, description: str):
        self.name = name
        self.description = description

    @abstractmethod
    def generate_code(self, *args, **kwargs):
        pass

class HTMLGenerator(WebDevelopmentTool):
    def __init__(self):
        super().__init__("HTML Generator", "Generates HTML code for web pages")

    def generate_code(self, structure: Dict[str, Any]) -> str:
        html = "<html><body>"
        for tag, content in structure.items():
            html += f"<{tag}>{content}</{tag}>"
        html += "</body></html>"
        return html

class CSSGenerator(WebDevelopmentTool):
    def __init__(self):
        super().__init__("CSS Generator", "Generates CSS code for styling web pages")

    def generate_code(self, styles: Dict[str, Dict[str, str]]) -> str:
        css = ""
        for selector, properties in styles.items():
            css += f"{selector} {{\n"
            for prop, value in properties.items():
                css += f"  {prop}: {value};\n"
            css += "}\n"
        return css

class JavaScriptGenerator(WebDevelopmentTool):
    def __init__(self):
        super().__init__("JavaScript Generator", "Generates JavaScript code for web functionality")

    def generate_code(self, functions: List[Dict[str, Any]]) -> str:
        js = ""
        for func in functions:
            js += f"function {func['name']}({', '.join(func['params'])}) {{\n"
            js += f"  {func['body']}\n"
            js += "}\n\n"
        return js

class EnhancedAIAgent:
    def __init__(self, name: str, description: str, skills: List[str], model_name: str):
        self.name = name
        self.description = description
        self.skills = skills
        self.model_name = model_name
        self.html_gen_tool = HTMLGenerator()
        self.css_gen_tool = CSSGenerator()
        self.js_gen_tool = JavaScriptGenerator()
        self.hf_api = HfApi()
        self.inference_api = InferenceApi(repo_id=model_name, token=os.environ.get("HF_API_TOKEN"))
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForCausalLM.from_pretrained(model_name)
        self.text_generation = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer)
        self.logger = logging.getLogger(__name__)

    def generate_agent_response(self, prompt: str) -> str:
        try:
            response = self.inference_api(prompt)
            return response[0]['generated_text']
        except Exception as e:
            self.logger.error(f"Error generating response: {str(e)}")
            return f"Error: Unable to generate response. {str(e)}"

    def create_project_structure(self, project_config: ProjectConfig) -> Dict[str, str]:
        project_files = {}
        for directory, files in project_config.structure.items():
            for file in files:
                file_path = os.path.join(directory, file)
                if file.endswith('.html'):
                    content = self.html_gen_tool.generate_code({"body": f"<h1>{project_config.name}</h1>"})
                elif file.endswith('.css'):
                    content = self.css_gen_tool.generate_code({"body": {"font-family": "Arial, sans-serif"}})
                elif file.endswith('.js'):
                    content = self.js_gen_tool.generate_code([{"name": "init", "params": [], "body": "console.log('Initialized');"}])
                else:
                    content = f"// TODO: Implement {file}"
                project_files[file_path] = content
        return project_files

    def generate_project_config(self, project_description: str) -> ProjectConfig:
        prompt = f"""
Based on the following project description, generate a ProjectConfig object:

Description: {project_description}

The ProjectConfig should include:
- name: A short, descriptive name for the project
- description: A brief summary of the project
- technologies: A list of technologies to be used (e.g., ["HTML", "CSS", "JavaScript", "React"])
- structure: A dictionary representing the file structure, where keys are directories and values are lists of files

Respond with a JSON object representing the ProjectConfig.
"""
        response = self.generate_agent_response(prompt)
        config_dict = json.loads(response)
        return ProjectConfig(**config_dict)

    def implement_feature(self, feature_description: str, existing_code: Optional[str] = None) -> str:
        prompt = f"""
Feature to implement: {feature_description}

Existing code:
```
{existing_code if existing_code else 'No existing code provided.'}
```

Please implement the described feature, modifying the existing code if provided.
Respond with only the code, no explanations.
"""
        return self.generate_agent_response(prompt)

    def review_code(self, code: str) -> str:
        prompt = f"""
Please review the following code and provide feedback:

```
{code}
```

Consider the following aspects in your review:
1. Code quality and readability
2. Potential bugs or errors
3. Adherence to best practices
4. Suggestions for improvement
Provide your feedback in a structured format.
"""
        return self.generate_agent_response(prompt)

    def optimize_code(self, code: str, optimization_goal: str) -> str:
        prompt = f"""
Please optimize the following code with the goal of improving {optimization_goal}:

```
{code}
```

Provide only the optimized code in your response, no explanations.
"""
        return self.generate_agent_response(prompt)

    def generate_documentation(self, code: str) -> str:
        prompt = f"""
Please generate comprehensive documentation for the following code:

```
{code}
```

Include the following in your documentation:
1. Overview of the code's purpose
2. Description of functions/classes and their parameters
3. Usage examples
4. Any important notes or considerations

Provide the documentation in Markdown format.
"""
        return self.generate_agent_response(prompt)

    def suggest_tests(self, code: str) -> str:
        prompt = f"""
Please suggest unit tests for the following code:

```
{code}
```

For each function or class, provide:
1. Test case description
2. Input values
3. Expected output or behavior

Provide the suggestions in a structured format.
"""
        return self.generate_agent_response(prompt)

    def explain_code(self, code: str) -> str:
        prompt = f"""
Please provide a detailed explanation of the following code:

```
{code}
```

Include in your explanation:
1. Overall purpose of the code
2. Breakdown of each significant part
3. How different components interact
4. Any notable algorithms or design patterns used

Explain in a way that would be understandable to a junior developer.
"""
        return self.generate_agent_response(prompt)

    def suggest_refactoring(self, code: str) -> str:
        prompt = f"""
Please suggest refactoring improvements for the following code:

```
{code}
```

Consider the following in your suggestions:
1. Improving code readability
2. Enhancing maintainability
3. Applying design patterns where appropriate
4. Optimizing performance (if applicable)

Provide specific suggestions and explain the benefits of each.
"""
        return self.generate_agent_response(prompt)