Spaces:
Sleeping
Sleeping
import gradio as gr | |
import logging | |
import time | |
from datetime import datetime | |
from typing import List, Optional, Tuple | |
import random | |
import nltk | |
# nltk.download('punkt') # Ensure punkt is downloaded if needed | |
from nltk.tokenize import sent_tokenize | |
import io | |
# from joblib import dump, load # Not used currently, commented out | |
# Import Hugging Face libraries | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from sentence_transformers import SentenceTransformer | |
from datasets import load_dataset # Added for dataset loading | |
# Import ML/Data libraries | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
# Standard libraries | |
from concurrent.futures import ThreadPoolExecutor # Still useful for embedding generation | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s" | |
) | |
logger = logging.getLogger(__name__) # Use __name__ for logger | |
# Download NLTK data (optional, might not be strictly needed depending on chunking) | |
# try: | |
# nltk.download('punkt', quiet=True) | |
# except Exception as e: | |
# logger.warning(f"Failed to download NLTK data: {e}") | |
# --- Configuration --- | |
class Config: | |
MODEL_NAME = "microsoft/DialoGPT-medium" | |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2" | |
MAX_TOKENS_RESPONSE = 150 # Max tokens for the generated response part | |
MAX_TOKENS_INPUT = 800 # Max tokens allowed for context + query (adjust based on model limits) | |
SIMILARITY_THRESHOLD = 0.3 # Adjusted threshold, tune as needed | |
CHUNK_SIZE = 300 # Smaller chunk size might be better for dataset entries | |
MAX_WORKERS = 5 # For parallel embedding generation | |
DATASET_NAME = "acecalisto3/sspnc" # Hugging Face Dataset ID | |
DATASET_SPLIT = "train" # Which split of the dataset to use | |
TEXT_COLUMNS = ["Subject", "Body"] # Columns containing text to index | |
SOURCE_INFO_COLUMNS = ["Subject", "Date"] # Columns to use for source attribution | |
# --- Data Structures --- | |
class ResourceItem: | |
def __init__(self, source_id: str, content: str, resource_type: str): | |
self.source_id = source_id # Changed 'url' to 'source_id' for clarity | |
self.content = content | |
self.type = resource_type | |
self.embedding = None # Overall embedding (optional now, as we use chunk embeddings) | |
self.chunks = [] | |
self.chunk_embeddings = [] | |
def __str__(self): | |
return f"ResourceItem(type={self.type}, source_id={self.source_id}, content_length={len(self.content)})" | |
def create_chunks(self, chunk_size=Config.CHUNK_SIZE): | |
"""Split content into overlapping chunks using sentence tokenization for better boundaries""" | |
if not self.content: | |
logger.warning(f"Content is empty for source_id: {self.source_id}. Skipping chunk creation.") | |
return | |
try: | |
sentences = sent_tokenize(self.content) | |
except LookupError: | |
logger.warning("NLTK 'punkt' tokenizer not found. Falling back to simple whitespace splitting. Consider running nltk.download('punkt')") | |
# Fallback to word splitting if sentence tokenization fails | |
words = self.content.split() | |
overlap = chunk_size // 4 | |
for i in range(0, len(words), chunk_size - overlap): | |
chunk = ' '.join(words[i : i + chunk_size]) | |
if chunk: | |
self.chunks.append(chunk) | |
return | |
except Exception as e: | |
logger.error(f"Error during sentence tokenization for {self.source_id}: {e}. Skipping chunk creation.") | |
return | |
current_chunk = "" | |
overlap_sentences = max(1, chunk_size // 100) # Overlap a few sentences | |
last_sentences = [] | |
for sentence in sentences: | |
# If adding the next sentence exceeds chunk size (considering words approx) | |
if len((current_chunk + " " + sentence).split()) > chunk_size: | |
if current_chunk: # Add the completed chunk | |
self.chunks.append(current_chunk.strip()) | |
# Start new chunk with overlap | |
current_chunk = " ".join(last_sentences) + " " + sentence | |
else: | |
current_chunk += " " + sentence | |
# Keep track of last sentences for overlap | |
last_sentences.append(sentence) | |
if len(last_sentences) > overlap_sentences: | |
last_sentences.pop(0) | |
# Add the last remaining chunk | |
if current_chunk.strip(): | |
self.chunks.append(current_chunk.strip()) | |
if not self.chunks: | |
logger.warning(f"No chunks created for source_id: {self.source_id}. Content might be too short or tokenization failed.") | |
# --- Chatbot Core Logic --- | |
class SchoolChatbot: | |
def __init__(self): | |
logger.info("Initializing SchoolChatbot...") | |
self.setup_models() | |
self.resources: List[ResourceItem] = [] | |
self.load_and_index_dataset() # Changed from crawl_and_index_resources | |
def setup_models(self): | |
try: | |
logger.info("Setting up models...") | |
# Consider adding device mapping if GPU is available: device_map="auto" | |
self.tokenizer = AutoTokenizer.from_pretrained(Config.MODEL_NAME) | |
self.model = AutoModelForCausalLM.from_pretrained(Config.MODEL_NAME) | |
self.embedding_model = SentenceTransformer(Config.EMBEDDING_MODEL) | |
# Ensure tokenizer has a padding token | |
if self.tokenizer.pad_token is None: | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
self.model.config.pad_token_id = self.model.config.eos_token_id | |
logger.info("Models setup completed successfully.") | |
except Exception as e: | |
logger.error(f"Failed to setup models: {e}") | |
raise RuntimeError("Failed to initialize required models") from e | |
def load_and_index_dataset(self): | |
logger.info(f"Loading dataset: {Config.DATASET_NAME}, split: {Config.DATASET_SPLIT}") | |
try: | |
# Load the dataset | |
dataset = load_dataset(Config.DATASET_NAME, split=Config.DATASET_SPLIT) | |
logger.info(f"Dataset loaded successfully. Number of rows: {len(dataset)}") | |
# Process dataset rows in parallel (for embedding generation) | |
with ThreadPoolExecutor(max_workers=Config.MAX_WORKERS) as executor: | |
futures = [] | |
for i, row in enumerate(dataset): | |
# Combine text from specified columns | |
text_content = " ".join([str(row[col]) for col in Config.TEXT_COLUMNS if row.get(col)]) | |
text_content = text_content.strip() # Remove leading/trailing whitespace | |
# Create a source identifier | |
source_parts = [f"{col}: {row[col]}" for col in Config.SOURCE_INFO_COLUMNS if row.get(col)] | |
source_id = f"Dataset Entry {i} ({'; '.join(source_parts)})" # More informative ID | |
if not text_content: | |
logger.warning(f"Row {i} has no content in specified columns. Skipping.") | |
continue | |
# Submit the processing task | |
futures.append(executor.submit(self.process_and_store_resource, source_id, text_content, 'dataset_entry')) | |
# Wait for all futures to complete and collect results | |
for future in futures: | |
try: | |
result_item = future.result() | |
if result_item: | |
self.resources.append(result_item) | |
except Exception as e: | |
logger.error(f"Error processing dataset entry in thread: {e}") | |
logger.info(f"Dataset processing completed. Indexed {len(self.resources)} resources.") | |
except Exception as e: | |
logger.error(f"Failed to load or process dataset {Config.DATASET_NAME}: {e}") | |
# Decide if the app should continue without data or raise an error | |
# raise RuntimeError("Failed to load data") from e # Option: halt if data fails | |
def process_and_store_resource(self, source_id: str, text_data: str, resource_type: str) -> Optional[ResourceItem]: | |
"""Creates ResourceItem, chunks, and generates embeddings for a single data entry.""" | |
try: | |
# Create resource item and split into chunks | |
item = ResourceItem(source_id, text_data, resource_type) | |
item.create_chunks() | |
if not item.chunks: | |
logger.warning(f"No chunks generated for {source_id}. Skipping storage.") | |
return None | |
# Generate embeddings for chunks (can be slow, hence the thread pool) | |
chunk_embeddings_list = self.embedding_model.encode(item.chunks, show_progress_bar=False) # Batch encode | |
item.chunk_embeddings = chunk_embeddings_list | |
# Calculate average embedding (optional, might not be needed if only using chunk search) | |
# if item.chunk_embeddings: | |
# item.embedding = np.mean(item.chunk_embeddings, axis=0) | |
logger.debug(f"Processed resource: {source_id} (type={resource_type}), {len(item.chunks)} chunks.") | |
return item # Return the processed item | |
except Exception as e: | |
logger.error(f"Error processing/storing resource {source_id}: {e}") | |
return None # Return None on error | |
# store_resource is now process_and_store_resource and called within the thread pool | |
def find_best_matching_chunks(self, query: str, n_chunks: int = 3) -> List[Tuple[str, float, str]]: | |
"""Finds the most relevant text chunks based on semantic similarity.""" | |
if not self.resources: | |
logger.warning("No resources loaded or indexed. Cannot find matches.") | |
return [] | |
try: | |
query_embedding = self.embedding_model.encode(query) | |
all_chunks_with_scores = [] | |
for resource in self.resources: | |
if not resource.chunks or not resource.chunk_embeddings: | |
continue # Skip resources with no chunks/embeddings | |
# Calculate similarity between query and all chunks of the current resource | |
similarities = cosine_similarity([query_embedding], resource.chunk_embeddings)[0] | |
for chunk, score in zip(resource.chunks, similarities): | |
if score > Config.SIMILARITY_THRESHOLD: | |
all_chunks_with_scores.append((chunk, float(score), resource.source_id)) # Use source_id | |
# Sort by similarity score (descending) and return top n | |
all_chunks_with_scores.sort(key=lambda x: x[1], reverse=True) | |
return all_chunks_with_scores[:n_chunks] | |
except Exception as e: | |
logger.error(f"Error finding matching chunks: {e}") | |
return [] | |
def generate_response(self, user_input: str) -> str: | |
"""Generates a response based on user input and retrieved context.""" | |
try: | |
# 1. Find relevant context chunks | |
best_chunks = self.find_best_matching_chunks(user_input) | |
if not best_chunks: | |
logger.info(f"No relevant chunks found for query: '{user_input}'") | |
return "I couldn't find specific information related to your question in the provided documents. Could you please rephrase or ask about a different topic?" | |
# 2. Prepare context and source attribution | |
context = "\n".join([chunk[0] for chunk in best_chunks]) | |
# Use source_id from the chunk tuple (index 2) | |
source_ids = sorted(list(set(chunk[2] for chunk in best_chunks))) | |
sources_text = "\n\nSources:\n" + "\n".join([f"- {sid}" for sid in source_ids]) | |
# 3. Prepare input for the language model | |
# Ensure the input doesn't exceed model limits | |
prompt_template = f"Based on the following information:\n{context}\n\nAnswer the question: {user_input}\nAnswer:" | |
# prompt_template = f"Context: {context}\nUser: {user_input}\nAssistant:" # Alternative simpler prompt | |
# 4. Tokenize and truncate if necessary | |
input_ids = self.tokenizer.encode(prompt_template, return_tensors='pt', max_length=Config.MAX_TOKENS_INPUT, truncation=True) | |
# 5. Generate response using the language model | |
logger.info("Generating response with LLM...") | |
output_sequences = self.model.generate( | |
input_ids=input_ids, | |
max_new_tokens=Config.MAX_TOKENS_RESPONSE, # Control length of *new* tokens | |
pad_token_id=self.tokenizer.pad_token_id, | |
eos_token_id=self.tokenizer.eos_token_id, | |
temperature=0.7, | |
top_p=0.9, | |
do_sample=True, | |
num_return_sequences=1 # Generate one response | |
) | |
# Decode the generated part of the response | |
# response_text = self.tokenizer.decode(output_sequences[0], skip_special_tokens=True) | |
# Decode only the newly generated tokens, excluding the prompt | |
response_text = self.tokenizer.decode(output_sequences[0][input_ids.shape[-1]:], skip_special_tokens=True) | |
# Basic post-processing (optional) | |
response_text = response_text.strip() | |
# Remove potential repetition of the question if the model includes it | |
if user_input.lower() in response_text.lower()[:len(user_input)+10]: | |
response_text = response_text.split(user_input, 1)[-1].strip("? ") | |
logger.info(f"Generated response (before sources): {response_text}") | |
# 6. Combine response and sources | |
full_response = response_text + sources_text | |
return full_response | |
except Exception as e: | |
logger.exception(f"Error generating response: {e}") # Use logger.exception to include stack trace | |
return "I apologize, but I encountered an error while processing your question. Please check the logs or try again later." | |
# --- Gradio Interface --- | |
def create_gradio_interface(chatbot: SchoolChatbot): | |
"""Creates and returns the Gradio web interface.""" | |
def respond(user_input: str) -> str: | |
if not user_input: | |
return "Please enter a question." | |
# Add basic input sanitization if needed | |
return chatbot.generate_response(user_input) | |
interface = gr.Interface( | |
fn=respond, | |
inputs=gr.Textbox( | |
label="Ask a Question", | |
placeholder="Type your question about the school information...", | |
lines=3, # Increased lines slightly | |
), | |
outputs=gr.Textbox( | |
label="Answer", | |
placeholder="Response will appear here...", | |
lines=10, # Increased lines for longer answers + sources | |
), | |
title="School Information Chatbot (Dataset Powered)", | |
description="Ask about information contained in the school dataset. The chatbot uses AI to find relevant details and generate answers.", | |
examples=[ # Update examples based on dataset content | |
["What are the main subjects covered in the documents?"], | |
["Are there any mentions of specific events or dates?"], | |
["Summarize the key points about [topic from dataset]."] | |
], | |
theme=gr.themes.Soft(), | |
allow_flagging="never", # Changed from flagging_mode | |
# Optional: Add feedback capabilities | |
# feedback=["thumbs", "textbox"], | |
) | |
return interface | |
# --- Main Execution --- | |
if __name__ == "__main__": | |
# Install necessary libraries if running for the first time | |
# pip install gradio transformers sentence-transformers torch datasets scikit-learn nltk numpy beautifulsoup4 requests PyPDF2 icalendar fake-useragent joblib # Ensure all are installed | |
print("Starting application...") | |
try: | |
# 1. Initialize the chatbot (loads models and data) | |
school_chatbot = SchoolChatbot() | |
# 2. Create the Gradio interface | |
app_interface = create_gradio_interface(school_chatbot) | |
# 3. Launch the interface | |
print("Launching Gradio Interface...") | |
app_interface.launch( | |
server_name="0.0.0.0", # Accessible on the local network | |
server_port=7860, | |
share=False, # Set to True to get a public link (use with caution) | |
debug=False # Set to True for more detailed Gradio logs (can be verbose) | |
) | |
print("Interface launched. Access it at http://localhost:7860 (or the relevant IP)") | |
except ImportError as ie: | |
logger.error(f"ImportError: {ie}. Make sure all required libraries are installed.") | |
print(f"ImportError: {ie}. Please install the missing library (e.g., pip install {ie.name}).") | |
except Exception as e: | |
logger.critical(f"Failed to start the application: {e}", exc_info=True) # Log critical error with stack trace | |
print(f"Critical error during startup: {e}") |