Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,15 @@
|
|
1 |
import os
|
|
|
2 |
import subprocess
|
3 |
import streamlit as st
|
4 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
7 |
PROJECT_ROOT = "projects"
|
@@ -44,33 +52,24 @@ I am confident that I can leverage my expertise to assist you in developing and
|
|
44 |
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
45 |
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
46 |
|
47 |
-
# Analyze chat history and workspace projects to suggest actions
|
48 |
-
# Example:
|
49 |
-
# - Check if the user has requested to create a new file
|
50 |
-
# - Check if the user has requested to install a package
|
51 |
-
# - Check if the user has requested to run a command
|
52 |
-
# - Check if the user has requested to generate code
|
53 |
-
# - Check if the user has requested to translate code
|
54 |
-
# - Check if the user has requested to summarize text
|
55 |
-
# - Check if the user has requested to analyze sentiment
|
56 |
-
|
57 |
-
# Generate a response based on the analysis
|
58 |
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
59 |
|
60 |
return summary, next_step
|
61 |
|
62 |
-
def load_hf_token():
|
63 |
-
return 'YOUR_HF_TOKEN'
|
64 |
-
|
65 |
def save_agent_to_file(agent):
|
66 |
-
"""Saves the agent's prompt to a file."""
|
67 |
if not os.path.exists(AGENT_DIRECTORY):
|
68 |
os.makedirs(AGENT_DIRECTORY)
|
69 |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
|
|
70 |
with open(file_path, "w") as file:
|
71 |
file.write(agent.create_agent_prompt())
|
|
|
|
|
72 |
st.session_state.available_agents.append(agent.name)
|
73 |
|
|
|
|
|
74 |
def load_agent_prompt(agent_name):
|
75 |
"""Loads an agent prompt from a file."""
|
76 |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
@@ -87,116 +86,162 @@ def create_agent_from_text(name, text):
|
|
87 |
save_agent_to_file(agent)
|
88 |
return agent.create_agent_prompt()
|
89 |
|
|
|
90 |
def chat_interface_with_agent(input_text, agent_name):
|
91 |
agent_prompt = load_agent_prompt(agent_name)
|
92 |
if agent_prompt is None:
|
93 |
return f"Agent {agent_name} not found."
|
94 |
|
95 |
-
|
|
|
96 |
try:
|
97 |
-
model = AutoModelForCausalLM.from_pretrained(model_name
|
98 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name
|
99 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
100 |
except EnvironmentError as e:
|
101 |
return f"Error loading model: {e}"
|
102 |
|
|
|
103 |
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
|
104 |
|
105 |
-
|
106 |
max_input_length = 900
|
|
|
107 |
if input_ids.shape[1] > max_input_length:
|
108 |
input_ids = input_ids[:, :max_input_length]
|
109 |
|
|
|
110 |
outputs = model.generate(
|
111 |
-
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True,
|
112 |
-
pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
|
113 |
)
|
114 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
115 |
return response
|
116 |
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
def terminal_interface(command, project_name=None):
|
119 |
if project_name:
|
120 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
121 |
if not os.path.exists(project_path):
|
122 |
return f"Project {project_name} does not exist."
|
123 |
-
result = subprocess.run(command, shell=True, capture_output=True, text=True
|
124 |
else:
|
125 |
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
# Code editor interface
|
129 |
def code_editor_interface(code):
|
130 |
try:
|
131 |
formatted_code = black.format_str(code, mode=black.FileMode())
|
132 |
except black.NothingChanged:
|
133 |
formatted_code = code
|
134 |
-
|
135 |
result = StringIO()
|
136 |
sys.stdout = result
|
137 |
sys.stderr = result
|
138 |
-
|
139 |
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
|
140 |
sys.stdout = sys.__stdout__
|
141 |
sys.stderr = sys.__stderr__
|
142 |
-
|
143 |
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
|
144 |
-
|
|
|
145 |
return formatted_code, lint_message
|
146 |
|
147 |
-
# Text summarization tool
|
148 |
def summarize_text(text):
|
149 |
-
summarizer = pipeline("summarization"
|
150 |
-
summary = summarizer(text, max_length=
|
|
|
151 |
return summary[0]['summary_text']
|
152 |
|
153 |
-
# Sentiment analysis tool
|
154 |
def sentiment_analysis(text):
|
155 |
-
analyzer = pipeline("sentiment-analysis"
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
def translate_code(code,
|
161 |
-
#
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
return translated_code
|
165 |
|
166 |
def generate_code(code_idea):
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
return generated_code
|
171 |
|
172 |
-
def
|
173 |
-
"""
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
st.session_state.workspace_projects[project_name] = {'files': []}
|
185 |
-
return f"Project '{project_name}' created successfully."
|
186 |
-
else:
|
187 |
-
return f"Project '{project_name}' already exists."
|
188 |
-
|
189 |
-
# Add code to workspace
|
190 |
-
def add_code_to_workspace(project_name, code, file_name):
|
191 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
192 |
-
if not os.path.exists(project_path):
|
193 |
-
return f"Project '{project_name}' does not exist."
|
194 |
-
|
195 |
-
file_path = os.path.join(project_path, file_name)
|
196 |
-
with open(file_path, "w") as file:
|
197 |
-
file.write(code)
|
198 |
-
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
199 |
-
return f"Code added to '{file_name}' in project '{project_name}'."
|
200 |
|
201 |
# Streamlit App
|
202 |
st.title("AI Agent Creator")
|
@@ -225,7 +270,12 @@ elif app_mode == "Tool Box":
|
|
225 |
st.subheader("Chat with CodeCraft")
|
226 |
chat_input = st.text_area("Enter your message:")
|
227 |
if st.button("Send"):
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
229 |
st.session_state.chat_history.append((chat_input, chat_response))
|
230 |
st.write(f"CodeCraft: {chat_response}")
|
231 |
|
@@ -262,8 +312,8 @@ elif app_mode == "Tool Box":
|
|
262 |
# Text Translation Tool (Code Translation)
|
263 |
st.subheader("Translate Code")
|
264 |
code_to_translate = st.text_area("Enter code to translate:")
|
265 |
-
source_language = st.text_input("Enter source language (e.g
|
266 |
-
target_language = st.text_input("Enter target language (e.g
|
267 |
if st.button("Translate Code"):
|
268 |
translated_code = translate_code(code_to_translate, source_language, target_language)
|
269 |
st.code(translated_code, language=target_language.lower())
|
@@ -275,6 +325,20 @@ elif app_mode == "Tool Box":
|
|
275 |
generated_code = generate_code(code_idea)
|
276 |
st.code(generated_code, language="python")
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
elif app_mode == "Workspace Chat App":
|
279 |
# Workspace Chat App
|
280 |
st.header("Workspace Chat App")
|
@@ -289,7 +353,7 @@ elif app_mode == "Workspace Chat App":
|
|
289 |
# Add Code to Workspace
|
290 |
st.subheader("Add Code to Workspace")
|
291 |
code_to_add = st.text_area("Enter code to add to workspace:")
|
292 |
-
file_name = st.text_input("Enter file name (e.g
|
293 |
if st.button("Add Code"):
|
294 |
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
|
295 |
st.success(add_code_status)
|
@@ -345,4 +409,8 @@ elif app_mode == "Workspace Chat App":
|
|
345 |
st.write("Autonomous Build Summary:")
|
346 |
st.write(summary)
|
347 |
st.write("Next Step:")
|
348 |
-
st.write(next_step)
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import sys
|
3 |
import subprocess
|
4 |
import streamlit as st
|
5 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
6 |
+
import black
|
7 |
+
from pylint import lint
|
8 |
+
from io import StringIO
|
9 |
+
import openai
|
10 |
+
|
11 |
+
# Set your OpenAI API key here
|
12 |
+
openai.api_key = "YOUR_OPENAI_API_KEY"
|
13 |
|
14 |
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
15 |
PROJECT_ROOT = "projects"
|
|
|
52 |
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
53 |
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
56 |
|
57 |
return summary, next_step
|
58 |
|
|
|
|
|
|
|
59 |
def save_agent_to_file(agent):
|
60 |
+
"""Saves the agent's prompt to a file locally and then commits to the Hugging Face repository."""
|
61 |
if not os.path.exists(AGENT_DIRECTORY):
|
62 |
os.makedirs(AGENT_DIRECTORY)
|
63 |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
64 |
+
config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt")
|
65 |
with open(file_path, "w") as file:
|
66 |
file.write(agent.create_agent_prompt())
|
67 |
+
with open(config_path, "w") as file:
|
68 |
+
file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
|
69 |
st.session_state.available_agents.append(agent.name)
|
70 |
|
71 |
+
commit_and_push_changes(f"Add agent {agent.name}")
|
72 |
+
|
73 |
def load_agent_prompt(agent_name):
|
74 |
"""Loads an agent prompt from a file."""
|
75 |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
|
|
86 |
save_agent_to_file(agent)
|
87 |
return agent.create_agent_prompt()
|
88 |
|
89 |
+
# Chat interface using a selected agent
|
90 |
def chat_interface_with_agent(input_text, agent_name):
|
91 |
agent_prompt = load_agent_prompt(agent_name)
|
92 |
if agent_prompt is None:
|
93 |
return f"Agent {agent_name} not found."
|
94 |
|
95 |
+
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
|
96 |
+
model_name = "gpt2"
|
97 |
try:
|
98 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
100 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
101 |
except EnvironmentError as e:
|
102 |
return f"Error loading model: {e}"
|
103 |
|
104 |
+
# Combine the agent prompt with user input
|
105 |
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
|
106 |
|
107 |
+
# Truncate input text to avoid exceeding the model's maximum length
|
108 |
max_input_length = 900
|
109 |
+
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
|
110 |
if input_ids.shape[1] > max_input_length:
|
111 |
input_ids = input_ids[:, :max_input_length]
|
112 |
|
113 |
+
# Generate chatbot response
|
114 |
outputs = model.generate(
|
115 |
+
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True, pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
|
|
|
116 |
)
|
117 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
118 |
return response
|
119 |
|
120 |
+
def workspace_interface(project_name):
|
121 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
122 |
+
if not os.path.exists(PROJECT_ROOT):
|
123 |
+
os.makedirs(PROJECT_ROOT)
|
124 |
+
if not os.path.exists(project_path):
|
125 |
+
os.makedirs(project_path)
|
126 |
+
st.session_state.workspace_projects[project_name] = {"files": []}
|
127 |
+
st.session_state.current_state['workspace_chat']['project_name'] = project_name
|
128 |
+
commit_and_push_changes(f"Create project {project_name}")
|
129 |
+
return f"Project {project_name} created successfully."
|
130 |
+
else:
|
131 |
+
return f"Project {project_name} already exists."
|
132 |
+
|
133 |
+
def add_code_to_workspace(project_name, code, file_name):
|
134 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
135 |
+
if os.path.exists(project_path):
|
136 |
+
file_path = os.path.join(project_path, file_name)
|
137 |
+
with open(file_path, "w") as file:
|
138 |
+
file.write(code)
|
139 |
+
st.session_state.workspace_projects[project_name]["files"].append(file_name)
|
140 |
+
st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
|
141 |
+
commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
|
142 |
+
return f"Code added to {file_name} in project {project_name} successfully."
|
143 |
+
else:
|
144 |
+
return f"Project {project_name} does not exist."
|
145 |
+
|
146 |
def terminal_interface(command, project_name=None):
|
147 |
if project_name:
|
148 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
149 |
if not os.path.exists(project_path):
|
150 |
return f"Project {project_name} does not exist."
|
151 |
+
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
|
152 |
else:
|
153 |
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
154 |
+
if result.returncode == 0:
|
155 |
+
st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
|
156 |
+
return result.stdout
|
157 |
+
else:
|
158 |
+
st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
|
159 |
+
return result.stderr
|
160 |
|
|
|
161 |
def code_editor_interface(code):
|
162 |
try:
|
163 |
formatted_code = black.format_str(code, mode=black.FileMode())
|
164 |
except black.NothingChanged:
|
165 |
formatted_code = code
|
|
|
166 |
result = StringIO()
|
167 |
sys.stdout = result
|
168 |
sys.stderr = result
|
|
|
169 |
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
|
170 |
sys.stdout = sys.__stdout__
|
171 |
sys.stderr = sys.__stderr__
|
|
|
172 |
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
|
173 |
+
st.session_state.current_state['toolbox']['formatted_code'] = formatted_code
|
174 |
+
st.session_state.current_state['toolbox']['lint_message'] = lint_message
|
175 |
return formatted_code, lint_message
|
176 |
|
|
|
177 |
def summarize_text(text):
|
178 |
+
summarizer = pipeline("summarization")
|
179 |
+
summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
|
180 |
+
st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
|
181 |
return summary[0]['summary_text']
|
182 |
|
|
|
183 |
def sentiment_analysis(text):
|
184 |
+
analyzer = pipeline("sentiment-analysis")
|
185 |
+
sentiment = analyzer(text)
|
186 |
+
st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
|
187 |
+
return sentiment[0]
|
188 |
+
|
189 |
+
def translate_code(code, input_language, output_language):
|
190 |
+
# Define a dictionary to map programming languages to their corresponding file extensions
|
191 |
+
language_extensions = {
|
192 |
+
# ignore the specific languages right now, and continue to EOF
|
193 |
+
}
|
194 |
+
|
195 |
+
# Add code to handle edge cases such as invalid input and unsupported programming languages
|
196 |
+
if input_language not in language_extensions:
|
197 |
+
raise ValueError(f"Invalid input language: {input_language}")
|
198 |
+
if output_language not in language_extensions:
|
199 |
+
raise ValueError(f"Invalid output language: {output_language}")
|
200 |
+
|
201 |
+
# Use the dictionary to map the input and output languages to their corresponding file extensions
|
202 |
+
input_extension = language_extensions[input_language]
|
203 |
+
output_extension = language_extensions[output_language]
|
204 |
+
|
205 |
+
# Translate the code using the OpenAI API
|
206 |
+
prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}"
|
207 |
+
response = openai.ChatCompletion.create(
|
208 |
+
model="gpt-4",
|
209 |
+
messages=[
|
210 |
+
{"role": "system", "content": "You are an expert software developer."},
|
211 |
+
{"role": "user", "content": prompt}
|
212 |
+
]
|
213 |
+
)
|
214 |
+
translated_code = response.choices[0].message['content'].strip()
|
215 |
+
|
216 |
+
# Return the translated code
|
217 |
+
translated_code = response.choices[0].message['content'].strip()
|
218 |
+
st.session_state.current_state['toolbox']['translated_code'] = translated_code
|
219 |
return translated_code
|
220 |
|
221 |
def generate_code(code_idea):
|
222 |
+
response = openai.ChatCompletion.create(
|
223 |
+
model="gpt-4",
|
224 |
+
messages=[
|
225 |
+
{"role": "system", "content": "You are an expert software developer."},
|
226 |
+
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
|
227 |
+
]
|
228 |
+
)
|
229 |
+
generated_code = response.choices[0].message['content'].strip()
|
230 |
+
st.session_state.current_state['toolbox']['generated_code'] = generated_code
|
231 |
return generated_code
|
232 |
|
233 |
+
def commit_and_push_changes(commit_message):
|
234 |
+
"""Commits and pushes changes to the Hugging Face repository."""
|
235 |
+
commands = [
|
236 |
+
"git add .",
|
237 |
+
f"git commit -m '{commit_message}'",
|
238 |
+
"git push"
|
239 |
+
]
|
240 |
+
for command in commands:
|
241 |
+
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
242 |
+
if result.returncode != 0:
|
243 |
+
st.error(f"Error executing command '{command}': {result.stderr}")
|
244 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
# Streamlit App
|
247 |
st.title("AI Agent Creator")
|
|
|
270 |
st.subheader("Chat with CodeCraft")
|
271 |
chat_input = st.text_area("Enter your message:")
|
272 |
if st.button("Send"):
|
273 |
+
if chat_input.startswith("@"):
|
274 |
+
agent_name = chat_input.split(" ")[0][1:] # Extract agent_name from @agent_name
|
275 |
+
chat_input = " ".join(chat_input.split(" ")[1:]) # Remove agent_name from input
|
276 |
+
chat_response = chat_interface_with_agent(chat_input, agent_name)
|
277 |
+
else:
|
278 |
+
chat_response = chat_interface(chat_input)
|
279 |
st.session_state.chat_history.append((chat_input, chat_response))
|
280 |
st.write(f"CodeCraft: {chat_response}")
|
281 |
|
|
|
312 |
# Text Translation Tool (Code Translation)
|
313 |
st.subheader("Translate Code")
|
314 |
code_to_translate = st.text_area("Enter code to translate:")
|
315 |
+
source_language = st.text_input("Enter source language (e.g. 'Python'):")
|
316 |
+
target_language = st.text_input("Enter target language (e.g. 'JavaScript'):")
|
317 |
if st.button("Translate Code"):
|
318 |
translated_code = translate_code(code_to_translate, source_language, target_language)
|
319 |
st.code(translated_code, language=target_language.lower())
|
|
|
325 |
generated_code = generate_code(code_idea)
|
326 |
st.code(generated_code, language="python")
|
327 |
|
328 |
+
# Display Preset Commands
|
329 |
+
st.subheader("Preset Commands")
|
330 |
+
preset_commands = {
|
331 |
+
"Create a new project": "create_project('project_name')",
|
332 |
+
"Add code to workspace": "add_code_to_workspace('project_name', 'code', 'file_name')",
|
333 |
+
"Run terminal command": "terminal_interface('command', 'project_name')",
|
334 |
+
"Generate code": "generate_code('code_idea')",
|
335 |
+
"Summarize text": "summarize_text('text')",
|
336 |
+
"Analyze sentiment": "sentiment_analysis('text')",
|
337 |
+
"Translate code": "translate_code('code', 'source_language', 'target_language')",
|
338 |
+
}
|
339 |
+
for command_name, command in preset_commands.items():
|
340 |
+
st.write(f"{command_name}: `{command}`")
|
341 |
+
|
342 |
elif app_mode == "Workspace Chat App":
|
343 |
# Workspace Chat App
|
344 |
st.header("Workspace Chat App")
|
|
|
353 |
# Add Code to Workspace
|
354 |
st.subheader("Add Code to Workspace")
|
355 |
code_to_add = st.text_area("Enter code to add to workspace:")
|
356 |
+
file_name = st.text_input("Enter file name (e.g. 'app.py'):")
|
357 |
if st.button("Add Code"):
|
358 |
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
|
359 |
st.success(add_code_status)
|
|
|
409 |
st.write("Autonomous Build Summary:")
|
410 |
st.write(summary)
|
411 |
st.write("Next Step:")
|
412 |
+
st.write(next_step)
|
413 |
+
|
414 |
+
# Display current state for debugging
|
415 |
+
st.sidebar.subheader("Current State")
|
416 |
+
st.sidebar.json(st.session_state.current_state)
|