Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,17 @@ import requests
|
|
3 |
import os
|
4 |
import logging
|
5 |
from datetime import datetime
|
|
|
|
|
|
|
6 |
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
9 |
|
10 |
-
@spaces.GPU()
|
11 |
def stream_chat(
|
12 |
message: str,
|
13 |
history: list,
|
@@ -18,9 +24,6 @@ def stream_chat(
|
|
18 |
top_k: int = 20,
|
19 |
penalty: float = 1.2,
|
20 |
):
|
21 |
-
print(f'message: {message}')
|
22 |
-
print(f'history: {history}')
|
23 |
-
|
24 |
conversation = [
|
25 |
{"role": "system", "content": system_prompt}
|
26 |
]
|
@@ -32,9 +35,9 @@ def stream_chat(
|
|
32 |
|
33 |
conversation.append({"role": "user", "content": message})
|
34 |
|
35 |
-
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(
|
36 |
|
37 |
-
streamer =
|
38 |
|
39 |
generate_kwargs = dict(
|
40 |
input_ids=input_ids,
|
@@ -46,6 +49,10 @@ def stream_chat(
|
|
46 |
eos_token_id=[128001, 128008, 128009],
|
47 |
streamer=streamer,
|
48 |
)
|
|
|
|
|
|
|
|
|
49 |
app = Flask(__name__)
|
50 |
|
51 |
# Configure logging
|
|
|
3 |
import os
|
4 |
import logging
|
5 |
from datetime import datetime
|
6 |
+
import torch
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
+
from transformers import TextStreamer
|
9 |
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
+
# Load the model and tokenizer
|
13 |
+
model_name = "mixtral/instruct-v0.1"
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
16 |
|
|
|
17 |
def stream_chat(
|
18 |
message: str,
|
19 |
history: list,
|
|
|
24 |
top_k: int = 20,
|
25 |
penalty: float = 1.2,
|
26 |
):
|
|
|
|
|
|
|
27 |
conversation = [
|
28 |
{"role": "system", "content": system_prompt}
|
29 |
]
|
|
|
35 |
|
36 |
conversation.append({"role": "user", "content": message})
|
37 |
|
38 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(device)
|
39 |
|
40 |
+
streamer = TextStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
41 |
|
42 |
generate_kwargs = dict(
|
43 |
input_ids=input_ids,
|
|
|
49 |
eos_token_id=[128001, 128008, 128009],
|
50 |
streamer=streamer,
|
51 |
)
|
52 |
+
|
53 |
+
output = model.generate(**generate_kwargs)
|
54 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
55 |
+
|
56 |
app = Flask(__name__)
|
57 |
|
58 |
# Configure logging
|