Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
from sentence_transformers import SentenceTransformer, util | |
import os | |
import requests | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
class InferenceClient: | |
def __init__(self): | |
pass | |
def create_endpoint(self, repo_id, handler_path, model_id, task, description, hyperparameters): | |
pass | |
def update_endpoint(self, repo_id, handler_path, model_id, task, description, hyperparameters): | |
pass | |
def delete_endpoint(self, repo_id, handler_path): | |
pass | |
def list_endpoints(self): | |
pass | |
def get_endpoint_status(self, repo_id, handler_path): | |
pass | |
def get_endpoint_logs(self, repo_id, handler_path, num_lines): | |
pass | |
def get_endpoint_metrics(self, repo_id, handler_path): | |
pass | |
from huggingface_hub import InferenceClient,HfApi | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
# Load the pre-trained model and tokenizer | |
model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1" | |
model = AutoModelForCodeGeneration.from_pretrained(model_name) | |
tokenizer = AutoTokenizerForCodeGeneration.from_pretrained(model_name) | |
# Define input prompt | |
input_prompt = "(input value = highest-level-quality code content invocation ; True)" | |
# Tokenize the input prompt | |
input_ids = tokenizer(input_prompt, return_tensors="pt", truncation=True) | |
# Generate the code | |
generated_code = model.generate(input_ids.to(model.device)) | |
# Decode the generated code | |
generated_code_str = tokenizer.batch_decode(generated_code, skip_special_tokens=True)[0] | |
# Print the generated code | |
print(generated_code_str) | |
# Constants for enhanced organization | |
GITHUB_API_BASE_URL = "https://api.github.com/repos" | |
DEFAULT_MODEL = "apple/OpenELM" | |
MAX_RELATED_ISSUES = 3 | |
# Load a pre-trained model for sentence similarity | |
similarity_model = SentenceTransformer('all-mpnet-base-v2') | |
def analyze_issues(issue_text: str, model_name: str, severity: str = None, programming_language: str = None) -> str: | |
"""Analyzes issues and provides solutions using a specified language model.""" | |
model = pipeline("text-generation", model=model_name) | |
response = model( | |
f"{system_message}\n{issue_text}\nAssistant: ", | |
max_length=max_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_k=top_p, | |
) | |
assistant_response = response[0]['generated_text'].strip() | |
# Extract severity and programming language from the response | |
if "Severity" in assistant_response: | |
severity = assistant_response.split(":")[1].strip() | |
if "Programming Language" in assistant_response: | |
programming_language = assistant_response.split(":")[1].strip() | |
return { | |
'assistant_response': assistant_response, | |
'severity': severity, | |
'programming_language': programming_language, | |
} | |
def find_related_issues(issue_text: str, issues: list) -> list: | |
"""Finds semantically related issues from a list of issues based on the input issue text.""" | |
issue_embedding = similarity_model.encode(issue_text) | |
similarities = [util.cos_sim(issue_embedding, similarity_model.encode(issue['title'])) for issue in issues] | |
sorted_issues = sorted(enumerate(similarities), key=lambda x: x[1], reverse=True) | |
related_issues = [issues[i] for i, similarity in sorted_issues[:MAX_RELATED_ISSUES]] | |
return related_issues | |
def fetch_github_issues(github_api_token: str, github_username: str, github_repository: str) -> list: | |
"""Fetches issues from a specified GitHub repository using the GitHub API.""" | |
headers = {'Authorization': f'token {github_api_token}'} | |
url = f"{GITHUB_API_BASE_URL}/{github_username}/{github_repository}/issues" | |
response = requests.get(url, headers=headers) | |
issues = response.json() | |
return issues | |
def respond( | |
command, | |
history, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
github_api_token, | |
github_username, | |
github_repository, | |
selected_model, | |
severity, | |
programming_language, | |
*args, | |
**kwargs, | |
) -> dict: | |
"""Handles user commands and generates responses using the selected language model.""" | |
model = pipeline("text-generation", model="enricoros/big-agi") | |
response = model( | |
f"{system_message}\n{command}\n{history}\n{github_username}/{github_repository}\n{severity}\n{programming_language}\nAssistant: ", | |
max_length=max_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_k=top_p, | |
) | |
assistant_response = response[0]['generated_text'].strip() | |
return { | |
'assistant_response': assistant_response, | |
'severity': severity, | |
'programming_language': programming_language, | |
} | |
class MyChatbot(gr.Chatbot): | |
"""Custom Chatbot class for enhanced functionality.""" | |
def __init__(self, fn, **kwargs): | |
super().__init__(fn, **kwargs) | |
self.issues = [] # Store fetched issues | |
self.current_issue = None # Store the currently selected issue | |
def postprocess(self, y): | |
"""Post-processes the response to handle commands and display results.""" | |
# Extract the response from the dictionary | |
assistant_response = y['assistant_response'] | |
# Handle commands | |
if y['command'] == "/github": | |
if not y['github_api_token']: | |
return "Please enter your GitHub API token first." | |
else: | |
try: | |
self.issues = fetch_github_issues(y['github_api_token'], y['github_username'], y['github_repository']) | |
issue_list = "\n".join([f"{i+1}. {issue['title']}" for i, issue in enumerate(self.issues)]) | |
return f"Available GitHub Issues:\n{issue_list}\n\nEnter the issue number to analyze:" | |
except Exception as e: | |
return f"Error fetching GitHub issues: {e}" | |
elif y['command'] == "/help": | |
return """Available commands: | |
- `/github`: Analyze a GitHub issue | |
- `/help`: Show this help message | |
- `/generate_code [code description]`: Generate code based on the description | |
- `/explain_concept [concept]`: Explain a concept | |
- `/write_documentation [topic]`: Write documentation for a given topic | |
- `/translate_code [code] to [target language]`: Translate code to another language""" | |
elif y['command'].isdigit() and self.issues: | |
try: | |
issue_number = int(y['command']) - 1 | |
self.current_issue = self.issues[issue_number] # Store the selected issue | |
issue_text = self.current_issue['title'] + "\n\n" + self.current_issue['body'] | |
resolution = analyze_issues(issue_text, y['selected_model'], y['severity'], y['programming_language']) | |
related_issues = find_related_issues(issue_text, self.issues) | |
related_issue_text = "\n".join( | |
[f"- {issue['title']} (Similarity: {similarity:.2f})" for issue, similarity in related_issues] | |
) | |
return f"Resolution for Issue '{self.current_issue['title']}':\n{resolution['assistant_response']}\n\nRelated Issues:\n{related_issue_text}" | |
except Exception as e: | |
return f"Error analyzing issue: {e}" | |
elif y['command'].startswith("/"): | |
# Handle commands like `/generate_code`, `/explain_concept`, etc. | |
if self.current_issue: | |
# Use the current issue's context for these commands | |
issue_text = self.current_issue['title'] + "\n\n" + self.current_issue['body'] | |
return analyze_issues(issue_text, y['selected_model'], y['severity'], y['programming_language'])['assistant_response'] | |
else: | |
return "Please select an issue first using `/github`." | |
else: | |
# For free-form text, simply display the assistant's response | |
return assistant_response | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
github_api_token = gr.Textbox(label="GitHub API Token", type="password") | |
github_username = gr.Textbox(label="GitHub Username") | |
github_repository = gr.Textbox(label="GitHub Repository") | |
system_message = gr.Textbox( | |
value="You are GitBot, the Github project guardian angel. You resolve issues and propose implementation of feature requests", | |
label="System message", | |
) | |
model_dropdown = gr.Dropdown( | |
choices=[ | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"Gabriel/Swe-review-setfit-model", | |
"OpenBMB/multilingual-codeparrot" | |
], | |
label="Select Model for Issue Resolution", | |
value=DEFAULT_MODEL, | |
) | |
severity_dropdown = gr.Dropdown( | |
choices=["Critical", "Major", "Minor", "Trivial"], | |
label="Severity", | |
value=None, | |
) | |
programming_language_textbox = gr.Textbox(label="Programming Language") | |
chatbot = MyChatbot( | |
respond, | |
additional_inputs=[ | |
system_message, | |
gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.71, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.01, | |
label="Top-p (nucleus sampling)", | |
), | |
github_api_token, | |
github_username, | |
github_repository, | |
model_dropdown, | |
severity_dropdown, | |
programming_language_textbox, | |
], | |
) | |
# Add a button to fetch GitHub issues | |
fetch_issues_button = gr.Button(label="Fetch Issues") | |
fetch_issues_button.click(fn=lambda github_api_token, github_username, github_repository: chatbot.issues, inputs=[github_api_token, github_username, github_repository], outputs=[chatbot]) | |
# Add a dropdown to select an issue | |
issue_dropdown = gr.Dropdown(label="Select Issue", choices=[], interactive=True) | |
issue_dropdown.change(fn=lambda issue_number, chatbot: chatbot.postprocess(issue_number), inputs=[issue_dropdown, chatbot], outputs=[chatbot]) | |
# Connect the chatbot input to the issue dropdown | |
chatbot.input.change(fn=lambda chatbot, github_api_token, github_username, github_repository: chatbot.postprocess("/github"), inputs=[chatbot, github_api_token, github_username, github_repository], outputs=[chatbot]) | |
if __name__ == "__main__": | |
demo.queue().launch( | |
share=True, | |
server_name="0.0.0.0", | |
server_port=7860 | |
) |