GitBot / app.py
acecalisto3's picture
Update app.py
1d35b60 verified
raw
history blame
10.7 kB
import gradio as gr
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import os
import requests
from transformers import AutoModelForCausalLM, AutoTokenizer
class InferenceClient:
def __init__(self):
pass
def create_endpoint(self, repo_id, handler_path, model_id, task, description, hyperparameters):
pass
def update_endpoint(self, repo_id, handler_path, model_id, task, description, hyperparameters):
pass
def delete_endpoint(self, repo_id, handler_path):
pass
def list_endpoints(self):
pass
def get_endpoint_status(self, repo_id, handler_path):
pass
def get_endpoint_logs(self, repo_id, handler_path, num_lines):
pass
def get_endpoint_metrics(self, repo_id, handler_path):
pass
from huggingface_hub import InferenceClient,HfApi
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# Load the pre-trained model and tokenizer
model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1"
model = AutoModelForCodeGeneration.from_pretrained(model_name)
tokenizer = AutoTokenizerForCodeGeneration.from_pretrained(model_name)
# Define input prompt
input_prompt = "(input value = highest-level-quality code content invocation ; True)"
# Tokenize the input prompt
input_ids = tokenizer(input_prompt, return_tensors="pt", truncation=True)
# Generate the code
generated_code = model.generate(input_ids.to(model.device))
# Decode the generated code
generated_code_str = tokenizer.batch_decode(generated_code, skip_special_tokens=True)[0]
# Print the generated code
print(generated_code_str)
# Constants for enhanced organization
GITHUB_API_BASE_URL = "https://api.github.com/repos"
DEFAULT_MODEL = "apple/OpenELM"
MAX_RELATED_ISSUES = 3
# Load a pre-trained model for sentence similarity
similarity_model = SentenceTransformer('all-mpnet-base-v2')
def analyze_issues(issue_text: str, model_name: str, severity: str = None, programming_language: str = None) -> str:
"""Analyzes issues and provides solutions using a specified language model."""
model = pipeline("text-generation", model=model_name)
response = model(
f"{system_message}\n{issue_text}\nAssistant: ",
max_length=max_tokens,
do_sample=True,
temperature=temperature,
top_k=top_p,
)
assistant_response = response[0]['generated_text'].strip()
# Extract severity and programming language from the response
if "Severity" in assistant_response:
severity = assistant_response.split(":")[1].strip()
if "Programming Language" in assistant_response:
programming_language = assistant_response.split(":")[1].strip()
return {
'assistant_response': assistant_response,
'severity': severity,
'programming_language': programming_language,
}
def find_related_issues(issue_text: str, issues: list) -> list:
"""Finds semantically related issues from a list of issues based on the input issue text."""
issue_embedding = similarity_model.encode(issue_text)
similarities = [util.cos_sim(issue_embedding, similarity_model.encode(issue['title'])) for issue in issues]
sorted_issues = sorted(enumerate(similarities), key=lambda x: x[1], reverse=True)
related_issues = [issues[i] for i, similarity in sorted_issues[:MAX_RELATED_ISSUES]]
return related_issues
def fetch_github_issues(github_api_token: str, github_username: str, github_repository: str) -> list:
"""Fetches issues from a specified GitHub repository using the GitHub API."""
headers = {'Authorization': f'token {github_api_token}'}
url = f"{GITHUB_API_BASE_URL}/{github_username}/{github_repository}/issues"
response = requests.get(url, headers=headers)
issues = response.json()
return issues
def respond(
command,
history,
system_message,
max_tokens,
temperature,
top_p,
github_api_token,
github_username,
github_repository,
selected_model,
severity,
programming_language,
*args,
**kwargs,
) -> dict:
"""Handles user commands and generates responses using the selected language model."""
model = pipeline("text-generation", model="enricoros/big-agi")
response = model(
f"{system_message}\n{command}\n{history}\n{github_username}/{github_repository}\n{severity}\n{programming_language}\nAssistant: ",
max_length=max_tokens,
do_sample=True,
temperature=temperature,
top_k=top_p,
)
assistant_response = response[0]['generated_text'].strip()
return {
'assistant_response': assistant_response,
'severity': severity,
'programming_language': programming_language,
}
class MyChatbot(gr.Chatbot):
"""Custom Chatbot class for enhanced functionality."""
def __init__(self, fn, **kwargs):
super().__init__(fn, **kwargs)
self.issues = [] # Store fetched issues
self.current_issue = None # Store the currently selected issue
def postprocess(self, y):
"""Post-processes the response to handle commands and display results."""
# Extract the response from the dictionary
assistant_response = y['assistant_response']
# Handle commands
if y['command'] == "/github":
if not y['github_api_token']:
return "Please enter your GitHub API token first."
else:
try:
self.issues = fetch_github_issues(y['github_api_token'], y['github_username'], y['github_repository'])
issue_list = "\n".join([f"{i+1}. {issue['title']}" for i, issue in enumerate(self.issues)])
return f"Available GitHub Issues:\n{issue_list}\n\nEnter the issue number to analyze:"
except Exception as e:
return f"Error fetching GitHub issues: {e}"
elif y['command'] == "/help":
return """Available commands:
- `/github`: Analyze a GitHub issue
- `/help`: Show this help message
- `/generate_code [code description]`: Generate code based on the description
- `/explain_concept [concept]`: Explain a concept
- `/write_documentation [topic]`: Write documentation for a given topic
- `/translate_code [code] to [target language]`: Translate code to another language"""
elif y['command'].isdigit() and self.issues:
try:
issue_number = int(y['command']) - 1
self.current_issue = self.issues[issue_number] # Store the selected issue
issue_text = self.current_issue['title'] + "\n\n" + self.current_issue['body']
resolution = analyze_issues(issue_text, y['selected_model'], y['severity'], y['programming_language'])
related_issues = find_related_issues(issue_text, self.issues)
related_issue_text = "\n".join(
[f"- {issue['title']} (Similarity: {similarity:.2f})" for issue, similarity in related_issues]
)
return f"Resolution for Issue '{self.current_issue['title']}':\n{resolution['assistant_response']}\n\nRelated Issues:\n{related_issue_text}"
except Exception as e:
return f"Error analyzing issue: {e}"
elif y['command'].startswith("/"):
# Handle commands like `/generate_code`, `/explain_concept`, etc.
if self.current_issue:
# Use the current issue's context for these commands
issue_text = self.current_issue['title'] + "\n\n" + self.current_issue['body']
return analyze_issues(issue_text, y['selected_model'], y['severity'], y['programming_language'])['assistant_response']
else:
return "Please select an issue first using `/github`."
else:
# For free-form text, simply display the assistant's response
return assistant_response
with gr.Blocks() as demo:
with gr.Row():
github_api_token = gr.Textbox(label="GitHub API Token", type="password")
github_username = gr.Textbox(label="GitHub Username")
github_repository = gr.Textbox(label="GitHub Repository")
system_message = gr.Textbox(
value="You are GitBot, the Github project guardian angel. You resolve issues and propose implementation of feature requests",
label="System message",
)
model_dropdown = gr.Dropdown(
choices=[
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"Gabriel/Swe-review-setfit-model",
"OpenBMB/multilingual-codeparrot"
],
label="Select Model for Issue Resolution",
value=DEFAULT_MODEL,
)
severity_dropdown = gr.Dropdown(
choices=["Critical", "Major", "Minor", "Trivial"],
label="Severity",
value=None,
)
programming_language_textbox = gr.Textbox(label="Programming Language")
chatbot = MyChatbot(
respond,
additional_inputs=[
system_message,
gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.71, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.01,
label="Top-p (nucleus sampling)",
),
github_api_token,
github_username,
github_repository,
model_dropdown,
severity_dropdown,
programming_language_textbox,
],
)
# Add a button to fetch GitHub issues
fetch_issues_button = gr.Button(label="Fetch Issues")
fetch_issues_button.click(fn=lambda github_api_token, github_username, github_repository: chatbot.issues, inputs=[github_api_token, github_username, github_repository], outputs=[chatbot])
# Add a dropdown to select an issue
issue_dropdown = gr.Dropdown(label="Select Issue", choices=[], interactive=True)
issue_dropdown.change(fn=lambda issue_number, chatbot: chatbot.postprocess(issue_number), inputs=[issue_dropdown, chatbot], outputs=[chatbot])
# Connect the chatbot input to the issue dropdown
chatbot.input.change(fn=lambda chatbot, github_api_token, github_username, github_repository: chatbot.postprocess("/github"), inputs=[chatbot, github_api_token, github_username, github_repository], outputs=[chatbot])
if __name__ == "__main__":
demo.queue().launch(
share=True,
server_name="0.0.0.0",
server_port=7860
)