import numpy as np import os import cv2 from PIL import Image from torchvision import transforms import pandas as pd class dataLoader: def __init__(self, path): self.path = path self.img_path = path + 'images/' self.caption_path = path + 'captions.csv' self.img_list = os.listdir(self.img_path) self.caption_dict = self.get_caption_dict() self.transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor() ]) def get_caption_dict(self): caption_dict = {} df = pd.read_csv(self.caption_path, delimiter=',') for i in range(len(df)): img_name = df.iloc[i, 0] caption = df.iloc[i, 1] caption_dict[img_name] = caption return caption_dict def get_image(self, img_name): img = Image.open(self.img_path + img_name) img = self.transform(img) return img def get_caption(self, img_name): return self.caption_dict[img_name] def get_batch(self, batch_size): batch = np.random.choice(self.img_list, batch_size) images = [] captions = [] for img_name in batch: images.append(self.get_image(img_name)) captions.append(self.get_caption(img_name)) return images, captions def get_all(self): images = [] captions = [] for img_name in self.img_list: images.append(self.get_image(img_name)) captions.append(self.get_caption(img_name)) return images, captions