File size: 7,685 Bytes
535c52b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aaf04f
 
 
535c52b
 
4aaf04f
 
535c52b
4aaf04f
 
535c52b
 
4aaf04f
535c52b
 
4aaf04f
535c52b
 
4aaf04f
535c52b
 
4aaf04f
535c52b
4aaf04f
535c52b
 
 
 
 
 
 
 
4aaf04f
535c52b
 
4aaf04f
535c52b
 
4aaf04f
535c52b
4aaf04f
535c52b
 
4aaf04f
535c52b
 
 
55d906c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535c52b
 
 
 
 
 
55d906c
 
 
 
 
535c52b
 
 
55d906c
535c52b
55d906c
 
535c52b
 
 
 
55d906c
 
 
 
 
 
 
 
 
535c52b
 
55d906c
535c52b
 
 
 
55d906c
 
 
 
 
 
 
 
 
 
 
 
535c52b
 
55d906c
 
 
 
 
 
 
 
 
 
 
 
4aaf04f
535c52b
55d906c
 
 
 
 
 
 
 
 
4aaf04f
535c52b
55d906c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# import gradio as gr
# from transformers import pipeline, AutoModelForImageSegmentation 
# from gradio_imageslider import ImageSlider
# import torch
# from torchvision import transforms
# import spaces
# from PIL import Image

# import numpy as np
# import time

# birefnet = AutoModelForImageSegmentation.from_pretrained(
#     "ZhengPeng7/BiRefNet", trust_remote_code=True
# )
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# print("Using device:", device)

# birefnet.to(device)
# transform_image = transforms.Compose(
#     [
#         transforms.Resize((1024, 1024)),
#         transforms.ToTensor(),
#         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
#     ]
# )

# # @spaces.GPU
# # def PreProcess(image):
# #     size = image.size
# #     image = transform_image(image).unsqueeze(0).to(device)

# #     with torch.no_grad():
# #         preds = birefnet(image)[-1].sigmoid().cpu()
# #     pred = preds[0].squeeze()
# #     pred = transforms.ToPILImage()(pred)
# #     mask = pred.resize(size)
# #     # image.putalpha(mask)
# #     return image

# @spaces.GPU
# def PreProcess(image):
#     size = image.size  # Save original size
#     image_tensor = transform_image(image).unsqueeze(0).to(device)  # Transform the image into a tensor

#     with torch.no_grad():
#         preds = birefnet(image_tensor)[-1].sigmoid().cpu()  # Get predictions
#     pred = preds[0].squeeze()

#     # Convert the prediction tensor to a PIL image
#     pred_pil = transforms.ToPILImage()(pred)

#     # Resize the mask to match the original image size
#     mask = pred_pil.resize(size)

#     # Convert the original image (passed as input) to a PIL image
#     image_pil = image.convert("RGBA")  # Ensure the image has an alpha channel

#     # Apply the alpha mask to the image
#     image_pil.putalpha(mask)

#     return image_pil

# def segment_image(image):
#     start = time.time()
#     image = Image.fromarray(image)
#     image = image.convert("RGB")
#     org = image.copy()
#     image = PreProcess(image)
#     time_taken = np.round((time.time() - start),2)
#     return (image, org), time_taken

# slider = ImageSlider(label='birefnet', type="pil")
# image = gr.Image(label="Upload an Image")

# butterfly = Image.open("butterfly.png")
# Dog = Image.open('Dog.jpg')

# time_taken = gr.Textbox(label="Time taken", type="text")

# demo = gr.Interface(
#     segment_image, inputs=image, outputs=[slider,time_taken], examples=[butterfly,Dog], api_name="BiRefNet")

# if __name__ == '__main__' :
#     demo.launch()

# import requests
# import gradio as gr
# import tempfile
# import os
# from transformers import pipeline
# from huggingface_hub import InferenceClient
# import time
# import torch

# device = "cuda" if torch.cuda.is_available() else "cpu"


# model_id = "openai/whisper-large-v3"
# client = InferenceClient(model_id)
# pipe = pipeline("automatic-speech-recognition", model=model_id, device=device)

# # def transcribe(inputs, task):
# #     if inputs is None:
# #         raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

# #     text = pipe(inputs, chunk_length_s=30)["text"]
# #     return text

# def transcribe(inputs, task):
#     start = time.time()
#     if inputs is None:
#         raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

#     try:
  
#         res = client.automatic_speech_recognition(inputs).text
#         end = time.time() - start
#         return res, end
    
#     except Exception as e:
#         return fr'Error: {str(e)}'
        

# demo = gr.Blocks()

# time_taken = gr.Textbox(label="Time taken", type="text")

# mf_transcribe = gr.Interface(
#     fn=transcribe,
#     inputs=[
#         gr.Audio(sources="microphone", type="filepath"),
#         gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
#     ],
#     outputs=["text", time_taken],
#     title="Whisper Large V3: Transcribe Audio",
#     description=(
#         "Transcribe long-form microphone or audio inputs with the click of a button!"
#     ),
#     allow_flagging="never",
# )

# file_transcribe = gr.Interface(
#     fn=transcribe,
#     inputs=[
#         gr.Audio(sources="upload", type="filepath", label="Audio file"),
#         gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
#     ],
#     outputs=["text", time_taken],
#     title="Whisper Large V3: Transcribe Audio",
#     description=(
#         "Transcribe long-form microphone or audio inputs with the click of a button!"
#     ),
#     allow_flagging="never",
# )



# with demo:
#     gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])

# if __name__ == "__main__":
#     demo.queue().launch()

import requests
import gradio as gr
import tempfile
import os
from transformers import pipeline
from huggingface_hub import InferenceClient
import time
import torch

# Ensure CUDA is available and set device accordingly
# device = 0 if torch.cuda.is_available() else -1

model_id = "openai/whisper-large-v3"
client = InferenceClient(model_id)
pipe = pipeline("automatic-speech-recognition", model=model_id) #, device=device)

def transcribe(inputs, task, use_api):
    start = time.time()
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    try:
        if use_api:
            # Use InferenceClient (API) if checkbox is checked
            res = client.automatic_speech_recognition(inputs).text
        else:
            # Use local pipeline if checkbox is unchecked
            res = pipe(inputs, chunk_length_s=30)["text"]
        
        end = time.time() - start
        return res, end
    
    except Exception as e:
        return fr'Error: {str(e)}', None

demo = gr.Blocks()

mf_transcribe = gr.Interface(
                fn=transcribe,
                inputs=[
                    gr.Audio(sources="microphone", type="filepath"),
                    gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
                ],
                outputs=["text", "text"],  # Placeholder for transcribed text and time taken
                title="Whisper Large V3: Transcribe Audio",
                description=(
                    "Transcribe long-form microphone or audio inputs with the click of a button!"
                ),
                allow_flagging="never",
            )

file_transcribe = gr.Interface(
                fn=transcribe,
                inputs=[
                    gr.Audio(sources="upload", type="filepath", label="Audio file"),
                    gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
                ],
                outputs=["text", "text"],  # Placeholder for transcribed text and time taken
                title="Whisper Large V3: Transcribe Audio",
                description=(
                    "Transcribe long-form microphone or audio inputs with the click of a button!"
                ),
                allow_flagging="never",
            )

with demo:
    with gr.Row():
    # with gr.Column():
        # Group the tabs for microphone and file-based transcriptions
        gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])

        with gr.Column():
            use_api_checkbox = gr.Checkbox(label="Use API", value=False)  # Checkbox outside
            time_taken = gr.Textbox(label="Time taken", type="text")  # Time taken outside the interfaces


if __name__ == "__main__":
    demo.queue().launch()