Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,157 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
with gr.Blocks() as demo:
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
with gr.Row():
|
6 |
-
|
7 |
-
|
|
|
|
|
8 |
chatbot_2 = gr.Chatbot(type="messages")
|
9 |
-
textbox = gr.Textbox()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio_client.utils import encode_url_or_file_to_base64
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
|
5 |
+
def chat_1(history, prompt, image, oauth_token: gr.OAuthToken | None):
|
6 |
+
if oauth_token is None:
|
7 |
+
raise ValueError("Please log in to use this Space.")
|
8 |
+
|
9 |
+
if history is None:
|
10 |
+
history = []
|
11 |
+
|
12 |
+
client = InferenceClient(
|
13 |
+
provider="nebius",
|
14 |
+
api_key=oauth_token.token,
|
15 |
+
)
|
16 |
+
|
17 |
+
user_messages = [{"role": "user", "content": prompt}]
|
18 |
+
content = [
|
19 |
+
{
|
20 |
+
"type": "text",
|
21 |
+
"text": prompt
|
22 |
+
}
|
23 |
+
]
|
24 |
+
if image is not None:
|
25 |
+
content.append({
|
26 |
+
"type": "image_url",
|
27 |
+
"image_url": {
|
28 |
+
"url": encode_url_or_file_to_base64(image)
|
29 |
+
}
|
30 |
+
})
|
31 |
+
|
32 |
+
yield history + user_messages
|
33 |
+
|
34 |
+
messages = [
|
35 |
+
{
|
36 |
+
"role": "user",
|
37 |
+
"content": content
|
38 |
+
}
|
39 |
+
]
|
40 |
+
|
41 |
+
stream = client.chat.completions.create(
|
42 |
+
model="google/gemma-3-27b-it",
|
43 |
+
messages=messages,
|
44 |
+
max_tokens=500,
|
45 |
+
stream=True,
|
46 |
+
)
|
47 |
+
|
48 |
+
if image is not None:
|
49 |
+
user_messages.append({
|
50 |
+
"type": "image_url",
|
51 |
+
"image_url": {
|
52 |
+
"url": encode_url_or_file_to_base64(image)
|
53 |
+
}
|
54 |
+
})
|
55 |
+
response = ""
|
56 |
+
for chunk in stream:
|
57 |
+
if chunk.choices:
|
58 |
+
response += chunk.choices[0].delta.content
|
59 |
+
yield history + user_messages + [{"role": "assistant", "content": response}]
|
60 |
+
|
61 |
+
|
62 |
+
def chat_2(history, prompt, image, oauth_token: gr.OAuthToken | None):
|
63 |
+
if oauth_token is None:
|
64 |
+
raise ValueError("Please log in to use this Space.")
|
65 |
+
|
66 |
+
if history is None:
|
67 |
+
history = []
|
68 |
+
|
69 |
+
client = InferenceClient(
|
70 |
+
provider="together",
|
71 |
+
api_key=oauth_token.token,
|
72 |
+
)
|
73 |
+
|
74 |
+
user_messages = [{"role": "user", "content": prompt}]
|
75 |
+
content = [
|
76 |
+
{
|
77 |
+
"type": "text",
|
78 |
+
"text": prompt
|
79 |
+
}
|
80 |
+
]
|
81 |
+
if image is not None:
|
82 |
+
content.append({
|
83 |
+
"type": "image_url",
|
84 |
+
"image_url": {
|
85 |
+
"url": encode_url_or_file_to_base64(image)
|
86 |
+
}
|
87 |
+
})
|
88 |
+
|
89 |
+
yield history + user_messages
|
90 |
+
|
91 |
+
messages = [
|
92 |
+
{
|
93 |
+
"role": "user",
|
94 |
+
"content": content
|
95 |
+
}
|
96 |
+
]
|
97 |
+
|
98 |
+
stream = client.chat.completions.create(
|
99 |
+
model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
100 |
+
messages=messages,
|
101 |
+
max_tokens=500,
|
102 |
+
stream=True,
|
103 |
+
)
|
104 |
+
|
105 |
+
if image is not None:
|
106 |
+
user_messages.append({
|
107 |
+
"type": "image_url",
|
108 |
+
"image_url": {
|
109 |
+
"url": encode_url_or_file_to_base64(image)
|
110 |
+
}
|
111 |
+
})
|
112 |
+
response = ""
|
113 |
+
for chunk in stream:
|
114 |
+
if chunk.choices:
|
115 |
+
response += chunk.choices[0].delta.content
|
116 |
+
yield history + user_messages + [{"role": "assistant", "content": response}]
|
117 |
+
|
118 |
+
|
119 |
+
def chat_labels(models):
|
120 |
+
names = []
|
121 |
+
models = models or []
|
122 |
+
if len(models) > 0:
|
123 |
+
names.append(models[0])
|
124 |
+
else:
|
125 |
+
names.append("Chatbot 1")
|
126 |
+
if len(models) > 1:
|
127 |
+
names.append(models[1])
|
128 |
+
else:
|
129 |
+
names.append("Chatbot 2")
|
130 |
+
return gr.Chatbot(label=names[0], type="messages"), gr.Chatbot(label=names[1], type="messages")
|
131 |
|
132 |
with gr.Blocks() as demo:
|
133 |
+
with gr.Sidebar():
|
134 |
+
gr.Markdown("## Smol Arena")
|
135 |
+
gr.Markdown("Welcome to Smol Arena! This is a Space that allows you to test LLMs / VLMs that have less than 30B active parameters. \n\nInference is provided by [Hugging Face Inference API](https://huggingface.co/inference-api) so please log in to use this Space.")
|
136 |
+
gr.LoginButton()
|
137 |
+
dropdown = gr.Dropdown(multiselect=True, choices=["Gemma 3 (27b)", "Llama 4 (scout)"], value=["Gemma 3 (27b)", "Llama 4 (scout)"], max_choices=2, label="Select 2 models to compare.", interactive=False)
|
138 |
with gr.Row():
|
139 |
+
with gr.Column():
|
140 |
+
gr.Markdown("Optional image to ask the model about")
|
141 |
+
image = gr.Image(type="filepath", label="Optional Image")
|
142 |
+
chatbot_1 = gr.Chatbot(type="messages")
|
143 |
chatbot_2 = gr.Chatbot(type="messages")
|
144 |
+
textbox = gr.Textbox(label="Prompt")
|
145 |
+
|
146 |
+
|
147 |
+
gr.on(
|
148 |
+
[dropdown.change, demo.load],
|
149 |
+
fn=chat_labels,
|
150 |
+
inputs=[dropdown],
|
151 |
+
outputs=[chatbot_1, chatbot_2],
|
152 |
+
)
|
153 |
+
textbox.submit(fn=chat_1, inputs=[chatbot_1, textbox, image], outputs=[chatbot_1])
|
154 |
+
textbox.submit(fn=chat_2, inputs=[chatbot_2, textbox, image], outputs=[chatbot_2])
|
155 |
+
textbox.submit(lambda: "", inputs=[], outputs=[textbox])
|
156 |
|
157 |
demo.launch()
|