Spaces:
Running
Running
File size: 5,669 Bytes
18c95b6 d4208db b448efc d4208db b448efc d4208db b448efc d4208db b448efc d4208db b448efc d4208db b448efc d4208db b448efc d4208db b448efc d4208db b448efc d4208db b448efc d4208db b448efc d4208db b448efc d4208db b448efc d4208db b448efc d4208db b448efc d4208db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import torch
from PIL import Image
from RealESRGAN import RealESRGAN
import gradio as gr
import numpy as np
import tempfile
import time
import os
from transformers import pipeline # For Hugging Face image description generation
# Check for GPU availability
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load RealESRGAN model with specified scale
def load_model(scale):
model = RealESRGAN(device, scale=scale)
weights_path = f'weights/RealESRGAN_x{scale}.pth'
try:
model.load_weights(weights_path, download=True)
print(f"Weights for scale {scale} loaded successfully.")
except Exception as e:
print(f"Error loading weights for scale {scale}: {e}")
model.load_weights(weights_path, download=False)
return model
# Load models for different scales
model2 = load_model(2)
model4 = load_model(4)
model8 = load_model(8)
# Hugging Face image description pipeline
description_generator = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
# Enhance image based on selected scale
def enhance_image(image, scale):
try:
print(f"Enhancing image with scale {scale}...")
start_time = time.time()
image_np = np.array(image.convert('RGB'))
print(f"Image converted to numpy array: shape {image_np.shape}, dtype {image_np.dtype}")
if scale == '2x':
result = model2.predict(image_np)
elif scale == '4x':
result = model4.predict(image_np)
else:
result = model8.predict(image_np)
enhanced_image = Image.fromarray(np.uint8(result))
print(f"Image enhanced in {time.time() - start_time:.2f} seconds")
return enhanced_image
except Exception as e:
print(f"Error enhancing image: {e}")
return image
# Generate image description using Hugging Face Transformers
def generate_description(image):
try:
print("Generating description for the image...")
description = description_generator(image)[0]['generated_text']
print(f"Description generated: {description}")
return description
except Exception as e:
print(f"Error generating description: {e}")
return "Description unavailable."
# Adjust DPI of an image
def muda_dpi(input_image, dpi):
dpi_tuple = (dpi, dpi)
image = Image.fromarray(input_image.astype('uint8'), 'RGB')
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
image.save(temp_file, format='JPEG', dpi=dpi_tuple)
temp_file.close()
return Image.open(temp_file.name)
# Resize an image to specified dimensions
def resize_image(input_image, width, height):
image = Image.fromarray(input_image.astype('uint8'), 'RGB')
resized_image = image.resize((width, height))
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
resized_image.save(temp_file, format='JPEG')
temp_file.close()
return Image.open(temp_file.name)
# Process a list of images with various options
def process_images(image_files, enhance, scale, adjust_dpi, dpi, resize, width, height):
processed_images = []
file_paths = []
descriptions = [] # List to store descriptions
for image_file in image_files:
input_image = np.array(Image.open(image_file).convert('RGB'))
original_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
if enhance:
original_image = enhance_image(original_image, scale)
if adjust_dpi:
original_image = muda_dpi(np.array(original_image), dpi)
if resize:
original_image = resize_image(np.array(original_image), width, height)
# Generate description
description = generate_description(original_image)
descriptions.append(description)
# Sanitize the base filename
base_name = os.path.basename(image_file.name)
file_name, _ = os.path.splitext(base_name)
# Remove any characters that aren't alphanumeric, spaces, underscores, or hyphens
file_name = ''.join(e for e in file_name if e.isalnum() or e in (' ', '_', '-')).strip().replace(' ', '_')
# Create a final file path without unnecessary suffixes
output_path = os.path.join(tempfile.gettempdir(), f"{file_name}.jpg")
original_image.save(output_path, format='JPEG')
processed_images.append(original_image)
file_paths.append(output_path)
return processed_images, file_paths, descriptions
# Set up Gradio interface with share=True for public access
iface = gr.Interface(
fn=process_images,
inputs=[
gr.Files(label="Upload Image Files"), # Use gr.Files for multiple file uploads
gr.Checkbox(label="Enhance Images (ESRGAN)"),
gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model'),
gr.Checkbox(label="Adjust DPI"),
gr.Number(label="DPI", value=300),
gr.Checkbox(label="Resize"),
gr.Number(label="Width", value=512),
gr.Number(label="Height", value=512)
],
outputs=[
gr.Gallery(label="Final Images"), # Use gr.Gallery to display multiple images
gr.Files(label="Download Final Images"),
gr.Textbox(label="Image Descriptions", lines=5) # Display generated descriptions
],
title="Multi-Image Enhancer with Hugging Face Descriptions",
description="Upload multiple images (.jpg, .png), enhance using AI, adjust DPI, resize, generate descriptions, and download the final results."
)
iface.launch(debug=True, share=True)
|