import pandas as pd from transformers import pipeline from google.colab import files # Only needed if running in Google Colab # Function to enhance title using Hugging Face model def generate_title_with_huggingface(description): result = generator(description, max_length=100, num_return_sequences=1) return result[0]['generated_text'] # If running in Google Colab, use files.upload() to upload the CSV # For local environment, you can replace this with a file path directly uploaded = files.upload() # Assuming the file name is 'output.csv' after upload file_name = list(uploaded.keys())[0] # Load the CSV file df = pd.read_csv(file_name) # Initialize the text generation model (e.g., GPT-2) generator = pipeline('text-generation', model='gpt-2') # Apply the function to generate SEO-friendly titles df['Title'] = df['Description'].apply(generate_title_with_huggingface) # Function to generate keywords (basic example) def generate_keywords(description): words = set(description.replace(',', '').replace('.', '').split()) return ",".join(list(words)[:50]) # Generate basic keywords from the description (you can enhance this further) df['Keywords'] = df['Description'].apply(generate_keywords) # Save the SEO-optimized DataFrame to a new CSV file seo_output_file_path = 'seo_huggingface_filename_title_keywords.csv' df[['Filename', 'Title', 'Keywords']].to_csv(seo_output_file_path, index=False) # Download the resulting CSV file (if running in Colab) files.download(seo_output_file_path)