Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
5 |
+
from tensorflow.keras.models import load_model
|
6 |
+
|
7 |
+
# Load your trained model
|
8 |
+
model = load_model('/Users/abhinavyadav/Downloads/DSMP 1.0/eye_detection.h5')
|
9 |
+
IMG_SIZE = 224 # Resize the image to the input size of your model (e.g., 224x224)
|
10 |
+
|
11 |
+
# Streamlit App Title
|
12 |
+
st.title("ποΈ Real-Time Eye Detection")
|
13 |
+
st.write("Detect whether eyes are open or closed in real-time using your webcam.")
|
14 |
+
|
15 |
+
# Sidebar
|
16 |
+
st.sidebar.title("π§ Controls")
|
17 |
+
run = st.sidebar.checkbox("Start Webcam")
|
18 |
+
st.sidebar.write("Toggle the checkbox to start/stop the webcam.")
|
19 |
+
st.sidebar.write("Press 'Stop' to end the app.")
|
20 |
+
st.sidebar.info("Tip: Ensure your webcam is properly connected and accessible.")
|
21 |
+
|
22 |
+
# Create a container for video feed (first row)
|
23 |
+
with st.container():
|
24 |
+
st.header("πΉ Webcam Feed")
|
25 |
+
FRAME_WINDOW = st.image([])
|
26 |
+
|
27 |
+
# Create a container for status display (second row)
|
28 |
+
with st.container():
|
29 |
+
st.header("π Eye Status")
|
30 |
+
status_placeholder = st.markdown("**Status:** Waiting for webcam input...")
|
31 |
+
|
32 |
+
# Initialize webcam
|
33 |
+
cap = cv2.VideoCapture(0)
|
34 |
+
|
35 |
+
while run:
|
36 |
+
ret, frame = cap.read()
|
37 |
+
if not ret:
|
38 |
+
status_placeholder.error("Failed to capture image. Please check your webcam.")
|
39 |
+
break
|
40 |
+
|
41 |
+
# Convert frame to RGB
|
42 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
43 |
+
|
44 |
+
# Resize the frame for model input
|
45 |
+
img_resized = cv2.resize(frame_rgb, (IMG_SIZE, IMG_SIZE))
|
46 |
+
|
47 |
+
# Preprocess the image
|
48 |
+
img_array = img_to_array(img_resized) / 255.0
|
49 |
+
img_array = np.expand_dims(img_array, axis=0)
|
50 |
+
|
51 |
+
# Predict eye status
|
52 |
+
prediction = model.predict(img_array)
|
53 |
+
|
54 |
+
# Update prediction status
|
55 |
+
if prediction[0][0] > 0.8:
|
56 |
+
status = "Eye is Open π"
|
57 |
+
status_color = "green"
|
58 |
+
else:
|
59 |
+
status = "Eye is Closed π΄"
|
60 |
+
status_color = "red"
|
61 |
+
|
62 |
+
# Update UI with the prediction status
|
63 |
+
status_placeholder.markdown(f"**Status:** <span style='color:{status_color}'>{status}</span>", unsafe_allow_html=True)
|
64 |
+
|
65 |
+
# Display the video feed
|
66 |
+
FRAME_WINDOW.image(frame_rgb)
|
67 |
+
|
68 |
+
# Release resources when the checkbox is unchecked
|
69 |
+
cap.release()
|
70 |
+
cv2.destroyAllWindows()
|