#Imports from langchain_core.tools import tool from langchain_community.tools import DuckDuckGoSearchResults from langchain_openai import ChatOpenAI from langchain_groq import ChatGroq from datetime import datetime from langgraph.graph import StateGraph, END from langchain_core.messages import SystemMessage, HumanMessage, AIMessage from typing import TypedDict, Annotated from langchain_core.messages import AnyMessage from langgraph.graph.message import add_messages from langgraph.graph import START, StateGraph from langgraph.prebuilt import tools_condition, ToolNode import gradio as gr from dotenv import load_dotenv load_dotenv() #Fetch from the space's secrets (previously added) import os os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") #LLM Setup # llm = ChatOpenAI(model="gpt-4.1") llm = ChatGroq(model="llama3-70b-8192", api_key=os.getenv("GROQ_API_KEY"), temperature=0.0, max_tokens=1000, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0) #Tools to be used by the LLM @tool def add(a: float, b: float) -> float: """Add two numbers.""" return a + b @tool def subtract(a: float, b: float) -> float: """Subtract the second number from the first.""" return a - b @tool def multiply(a: float, b: float) -> float: """Multiply two numbers.""" return a * b @tool def divide(a: float, b: float) -> float: """Divide the first number by the second.""" if b == 0: raise ValueError("Division by zero.") return a / b @tool def get_current_time() -> str: """Get the current date and time.""" return datetime.now().isoformat() search = DuckDuckGoSearchResults() #Tool List tools = [add, subtract, multiply, divide, get_current_time, search] #Bind LLM with Tools llm_with_tools = llm.bind_tools(tools, parallel_tool_calls=True) #Class to hold the state to be passed through the graph/ flow class AgentState(TypedDict): messages: Annotated[list[AnyMessage], add_messages] #Define the Assistant Node def assistant(state: AgentState) -> AgentState: messages = state["messages"] response = llm_with_tools.invoke(messages) return {"messages": messages + [response]} #Graph builder = StateGraph(AgentState) # Define nodes: these do the work builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) # Define edges: these determine how the control flow moves builder.add_edge(START, "assistant") builder.add_conditional_edges( "assistant", # If the latest message (result) from assistant is a tool call -> tools_condition routes to tools # If the latest message (result) from assistant is a not a tool call -> tools_condition routes to END tools_condition, ) builder.add_edge("tools", "assistant") react_graph = builder.compile() #Helper function to find the last LLM message/ response def final_ai_message(input: str) -> str: final_ai_message_temp = None for message in reversed(input): if isinstance(message, AIMessage): final_ai_message_temp = message.content return final_ai_message_temp break return final_ai_message_temp sys_prompt = "You are a general AI assistant. I will ask you a question. Report your thoughts, and\nfinish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].\nYOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated\nlist of numbers and/or strings.\nIf you are asked for a number, don’t use comma to write your number neither use units such as $ or\npercent sign unless specified otherwise.\nIf you are asked for a string, don’t use articles, neither abbreviations (e.g. for cities), and write the\ndigits in plain text unless specified otherwise.\nIf you are asked for a comma separated list, apply the above rules depending of whether the element\nto be put in the list is a number or a string." #Create a function to interact with graph def chat_with_agent(user_input): inputs = { "messages": [ SystemMessage(content=sys_prompt), HumanMessage(content=user_input) ] } # Run the graph state = react_graph.invoke(inputs) final_ai_message_text = final_ai_message(state["messages"]) return final_ai_message_text if final_ai_message_text else "Sorry, I couldn't find a response."