File size: 967 Bytes
4c931c6
 
4f4c02c
 
4c931c6
 
 
 
4f4c02c
 
 
4c931c6
 
 
 
 
 
 
4f4c02c
 
 
 
4c931c6
 
 
 
 
4f4c02c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

app = FastAPI()

# Initialize the model (we'll use a small model for this example)
model_name = "EleutherAI/gpt-neo-125M"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

class GenerateRequest(BaseModel):
    prompt: str

@app.post("/generate")
async def generate(request: GenerateRequest):
    try:
        input_ids = tokenizer.encode(request.prompt, return_tensors="pt")
        output = model.generate(input_ids, max_length=100, num_return_sequences=1)
        generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
        return {"generated_text": generated_text}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/")
async def root():
    return {"message": "Model server is running"}