Spaces:
Sleeping
Sleeping
File size: 967 Bytes
4c931c6 4f4c02c 4c931c6 4f4c02c 4c931c6 4f4c02c 4c931c6 4f4c02c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
app = FastAPI()
# Initialize the model (we'll use a small model for this example)
model_name = "EleutherAI/gpt-neo-125M"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
class GenerateRequest(BaseModel):
prompt: str
@app.post("/generate")
async def generate(request: GenerateRequest):
try:
input_ids = tokenizer.encode(request.prompt, return_tensors="pt")
output = model.generate(input_ids, max_length=100, num_return_sequences=1)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return {"generated_text": generated_text}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {"message": "Model server is running"} |