import streamlit as st from PIL import Image from transformers import TrOCRProcessor, VisionEncoderDecoderModel # Create a file uploader widget file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) # Display the uploaded image if file is not None: # Read the image data image = Image.open(file) image=image.convert("RGB") #resized_image = image.resize((384, 384)) processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten') model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwritten') pixel_values = processor(images=image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] # Display the image st.image(image, caption='Uploaded Image', use_column_width=True) # Print the shape of the image st.write(f"Text: {generated_text} ")