import gradio as gr import requests, json import os import io import IPython.display from PIL import Image import base64 from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") def predict(text): return pipe(text)[0]["translation_text"] demo = gr.Interface( fn=predict, inputs='text', outputs='text', ) demo.launch() #def greet(name): # return "Hello " + name +os.environ['HF_TOKENS'] #demo = gr.Interface(fn=greet, inputs="text", outputs="text") #demo.launch() #gr.close_all() #gr.Textbox(os.environ['HF_TOKENS']) #Image-to-text endpoint #def get_completion(inputs, parameters=None, ENDPOINT_URL="http://internal-aws-prod-internal-revproxy-alb-11660607.us-west-1.elb.amazonaws.com/rev-proxy/huggingface/itt"): # headers = { # "Authorization": f"Bearer {os.environ['HF_TOKENS']}", # "Content-Type": "application/json" # } # data = { "inputs": inputs } # if parameters is not None: # data.update({"parameters": parameters}) # response = requests.request("POST", # ENDPOINT_URL, # headers=headers, # data=json.dumps(data)) # return json.loads(response.content.decode("utf-8")) #demo = gr.Interface( # fn=get_completion, # inputs="text", # outputs="text" #) #image_url = "https://free-images.com/sm/9596/dog_animal_greyhound_983023.jpg" #demo = gr.get_completion(image_url) def image_to_base64_str(pil_image): byte_arr = io.BytesIO() pil_image.save(byte_arr, format='PNG') byte_arr = byte_arr.getvalue() return str(base64.b64encode(byte_arr).decode('utf-8')) def captioner(image): base64_image = image_to_base64_str(image) result = get_completion(base64_image) return result[0]['generated_text'] #gr.close_all() #demo = gr.Interface(fn=captioner, # inputs=[gr.Image(label="Upload image", type="pil")], # outputs=[gr.Textbox(label="Caption")], # title="Image Captioning with BLIP", # description="Caption any image using the BLIP model", # allow_flagging="never") #demo = gr.Interface(fn=captioner, # inputs=[gr.Image(label="Upload image", type="pil")], #// outputs=[gr.Textbox(label="Caption")], # // title="Image Captioning with BLIP", # // description="Caption any image using the BLIP model", # // allow_flagging="never", # // examples=["christmas_dog.jpeg", "bird_flight.jpeg", "cow.jpeg"]) #demo.launch()