|
from transformers import pipeline |
|
import gradio as gr |
|
|
|
|
|
human_read = {"LABEL_0": "Negative", "LABEL_1": "Positive"} |
|
|
|
|
|
sentimental = pipeline("text-classification", model="Dmyadav2001/Sentimental-Analysis") |
|
|
|
|
|
def predictive_model(texts): |
|
result = sentimental(texts) |
|
sentiment = human_read[result[0]["label"]] |
|
score = result[0]["score"] |
|
return sentiment, score |
|
|
|
|
|
interface = gr.Interface( |
|
fn=predictive_model, |
|
inputs="text", |
|
outputs=["text", "number"], |
|
title="Sentiment-Analysis-App", |
|
description="Give your text, and my model will predict whether it's Positive or Negative." |
|
) |
|
|
|
interface.launch() |
|
|