import os from fastapi import FastAPI, HTTPException, Query from fastapi.responses import StreamingResponse from openai import AsyncOpenAI app = FastAPI() # Define available models (you can expand this list) AVAILABLE_MODELS = { "openai/gpt-4.1": "OpenAI GPT-4.1", "openai/gpt-4.1-mini": "OpenAI GPT-4.1-mini", "openai/gpt-4.1-nano": "OpenAI GPT-4.1-nano", "openai/gpt-4o": "OpenAI GPT-4o", "openai/gpt-4o-mini": "OpenAI GPT-4o mini", "openai/o4-mini": "OpenAI o4-mini", "microsoft/MAI-DS-R1": "MAI-DS-R1", "microsoft/Phi-3.5-MoE-instruct": "Phi-3.5-MoE instruct (128k)", "microsoft/Phi-3.5-mini-instruct": "Phi-3.5-mini instruct (128k)", "microsoft/Phi-3.5-vision-instruct": "Phi-3.5-vision instruct (128k)", "microsoft/Phi-3-medium-128k-instruct": "Phi-3-medium instruct (128k)", "microsoft/Phi-3-medium-4k-instruct": "Phi-3-medium instruct (4k)", "microsoft/Phi-3-mini-128k-instruct": "Phi-3-mini instruct (128k)", "microsoft/Phi-3-small-128k-instruct": "Phi-3-small instruct (128k)", "microsoft/Phi-3-small-8k-instruct": "Phi-3-small instruct (8k)", "microsoft/Phi-4": "Phi-4", "microsoft/Phi-4-mini-instruct": "Phi-4-mini-instruct", "microsoft/Phi-4-multimodal-instruct": "Phi-4-multimodal-instruct", "ai21-labs/AI21-Jamba-1.5-Large": "AI21 Jamba 1.5 Large", "ai21-labs/AI21-Jamba-1.5-Mini": "AI21 Jamba 1.5 Mini", "mistral-ai/Codestral-2501": "Codestral 25.01", "cohere/Cohere-command-r": "Cohere Command R", "cohere/Cohere-command-r-08-2024": "Cohere Command R 08-2024", "cohere/Cohere-command-r-plus": "Cohere Command R+", "cohere/Cohere-command-r-plus-08-2024": "Cohere Command R+ 08-2024", "deepseek/DeepSeek-R1": "DeepSeek-R1", "deepseek/DeepSeek-V3-0324": "DeepSeek-V3-0324", "meta/Llama-3.2-11B-Vision-Instruct": "Llama-3.2-11B-Vision-Instruct", "meta/Llama-3.2-90B-Vision-Instruct": "Llama-3.2-90B-Vision-Instruct", "meta/Llama-3.3-70B-Instruct": "Llama-3.3-70B-Instruct", "meta/Llama-4-Maverick-17B-128E-Instruct-FP8": "Llama 4 Maverick 17B 128E Instruct FP8", "meta/Llama-4-Scout-17B-16E-Instruct": "Llama 4 Scout 17B 16E Instruct", "meta/Meta-Llama-3.1-405B-Instruct": "Meta-Llama-3.1-405B-Instruct", "meta/Meta-Llama-3.1-70B-Instruct": "Meta-Llama-3.1-70B-Instruct", "meta/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct", "meta/Meta-Llama-3-70B-Instruct": "Meta-Llama-3-70B-Instruct", "meta/Meta-Llama-3-8B-Instruct": "Meta-Llama-3-8B-Instruct", "mistral-ai/Ministral-3B": "Ministral 3B", "mistral-ai/Mistral-Large-2411": "Mistral Large 24.11", "mistral-ai/Mistral-Nemo": "Mistral Nemo", "mistral-ai/Mistral-large-2407": "Mistral Large (2407)", "mistral-ai/Mistral-small": "Mistral Small", "cohere/cohere-command-a": "Cohere Command A", "core42/jais-30b-chat": "JAIS 30b Chat", "mistral-ai/mistral-small-2503": "Mistral Small 3.1" } async def generate_ai_response(prompt: str, model: str): # Configuration for unofficial GitHub AI endpoint token = os.getenv("GITHUB_TOKEN") if not token: raise HTTPException(status_code=500, detail="GitHub token not configured") endpoint = "https://models.github.ai/inference" # Validate the model if model not in AVAILABLE_MODELS: raise HTTPException(status_code=400, detail=f"Model not available. Choose from: {', '.join(AVAILABLE_MODELS.keys())}") client = AsyncOpenAI(base_url=endpoint, api_key=token) try: stream = await client.chat.completions.create( messages=[ {"role": "user", "content": prompt} ], model=model, temperature=1.0, top_p=1.0, stream=True ) async for chunk in stream: if chunk.choices and chunk.choices[0].delta.content: yield chunk.choices[0].delta.content except Exception as err: yield f"Error: {str(err)}" raise HTTPException(status_code=500, detail="AI generation failed") @app.post("/generate") async def generate_response( prompt: str = Query(..., description="The prompt for the AI"), model: str = Query("openai/gpt-4.1-mini", description="The model to use for generation") ): if not prompt: raise HTTPException(status_code=400, detail="Prompt cannot be empty") return StreamingResponse( generate_ai_response(prompt, model), media_type="text/event-stream" ) def get_app(): return app