Spaces:
Running
Running
File size: 1,301 Bytes
f7c0abb 045ef7e f7c0abb d0fc55f 194ad81 f7c0abb 045ef7e 6e02eb7 20d0b59 f7c0abb d0fc55f 045ef7e f7c0abb 045ef7e d0fc55f f7c0abb d0fc55f 045ef7e f7c0abb 045ef7e f7c0abb 045ef7e 20d0b59 045ef7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import os
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from openai import AsyncOpenAI
import asyncio
app = FastAPI()
# Initialize OpenAI client
client = AsyncOpenAI(api_key=os.getenv("GITHUB_TOKEN"))
async def generate_ai_response(prompt: str):
try:
stream = await client.chat.completions.create(
model="gpt-3.5-turbo", # Using 3.5-turbo for better compatibility
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
],
temperature=0.7,
stream=True
)
async for chunk in stream:
if chunk.choices and chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
except Exception as err:
yield f"Error: {str(err)}"
raise HTTPException(status_code=500, detail="AI generation failed")
@app.post("/generate")
async def generate_response(prompt: str):
if not prompt:
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
return StreamingResponse(
generate_ai_response(prompt),
media_type="text/event-stream"
)
# For Hugging Face Spaces
def get_app():
return app |