Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ from fastapi import FastAPI, HTTPException
|
|
3 |
from fastapi.responses import StreamingResponse
|
4 |
from openai import AsyncOpenAI
|
5 |
from pydantic import BaseModel
|
6 |
-
import asyncio
|
7 |
|
8 |
# Initialize FastAPI app
|
9 |
app = FastAPI()
|
@@ -16,9 +15,18 @@ class PromptRequest(BaseModel):
|
|
16 |
token = os.getenv("GITHUB_TOKEN")
|
17 |
if not token:
|
18 |
raise ValueError("GITHUB_TOKEN environment variable not set")
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Async generator to stream chunks
|
24 |
async def stream_response(prompt: str):
|
@@ -39,10 +47,11 @@ async def stream_response(prompt: str):
|
|
39 |
async for chunk in stream:
|
40 |
if chunk.choices and len(chunk.choices) > 0:
|
41 |
content = chunk.choices[0].delta.content or ""
|
42 |
-
yield content
|
|
|
43 |
|
44 |
except Exception as err:
|
45 |
-
yield f"Error: {err}"
|
46 |
|
47 |
# Endpoint to handle prompt and stream response
|
48 |
@app.post("/generate")
|
@@ -51,8 +60,12 @@ async def generate_response(request: PromptRequest):
|
|
51 |
# Return a StreamingResponse with the async generator
|
52 |
return StreamingResponse(
|
53 |
stream_response(request.prompt),
|
54 |
-
media_type="text/
|
55 |
)
|
56 |
except Exception as err:
|
57 |
-
raise HTTPException(status_code=500, detail=f"Server error: {err}")
|
58 |
|
|
|
|
|
|
|
|
|
|
3 |
from fastapi.responses import StreamingResponse
|
4 |
from openai import AsyncOpenAI
|
5 |
from pydantic import BaseModel
|
|
|
6 |
|
7 |
# Initialize FastAPI app
|
8 |
app = FastAPI()
|
|
|
15 |
token = os.getenv("GITHUB_TOKEN")
|
16 |
if not token:
|
17 |
raise ValueError("GITHUB_TOKEN environment variable not set")
|
18 |
+
|
19 |
+
# Use the correct endpoint for GitHub Models or fallback to a compatible OpenAI-like API
|
20 |
+
endpoint = os.getenv("API_ENDPOINT", "https://api.github.com/models") # Adjust based on GitHub Models documentation
|
21 |
+
model = os.getenv("MODEL_NAME", "gpt-4o-mini") # Use a valid model name, e.g., gpt-4o-mini or equivalent
|
22 |
+
|
23 |
+
# Initialize AsyncOpenAI client without proxies to avoid TypeError
|
24 |
+
client = AsyncOpenAI(
|
25 |
+
base_url=endpoint,
|
26 |
+
api_key=token,
|
27 |
+
# Explicitly disable proxies if not needed
|
28 |
+
http_client=None # Avoid passing unexpected kwargs like proxies
|
29 |
+
)
|
30 |
|
31 |
# Async generator to stream chunks
|
32 |
async def stream_response(prompt: str):
|
|
|
47 |
async for chunk in stream:
|
48 |
if chunk.choices and len(chunk.choices) > 0:
|
49 |
content = chunk.choices[0].delta.content or ""
|
50 |
+
if content: # Only yield non-empty content
|
51 |
+
yield content
|
52 |
|
53 |
except Exception as err:
|
54 |
+
yield f"Error: {str(err)}"
|
55 |
|
56 |
# Endpoint to handle prompt and stream response
|
57 |
@app.post("/generate")
|
|
|
60 |
# Return a StreamingResponse with the async generator
|
61 |
return StreamingResponse(
|
62 |
stream_response(request.prompt),
|
63 |
+
media_type="text/event-stream" # Use text/event-stream for streaming
|
64 |
)
|
65 |
except Exception as err:
|
66 |
+
raise HTTPException(status_code=500, detail=f"Server error: {str(err)}")
|
67 |
|
68 |
+
# Health check endpoint for Hugging Face Spaces
|
69 |
+
@app.get("/")
|
70 |
+
async def health_check():
|
71 |
+
return {"status": "healthy"}
|