vision / app.py
abdullahalioo's picture
Update app.py
b57e444 verified
raw
history blame
5.1 kB
import os
import logging
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from openai import AsyncOpenAI
from typing import Optional
# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
app = FastAPI(
title="Orion AI API",
description="API for streaming AI responses with model selection and publisher via URL",
version="1.0.0"
)
# Define valid models (replace with actual models supported by https://models.github.ai/inference)
VALID_MODELS = [
"deepseek/DeepSeek-V3-0324", # Added based on your request
"gpt-3.5-turbo", # Common model (placeholder)
"llama-3", # Common model (placeholder)
"mistral-7b" # Common model (placeholder)
]
class GenerateRequest(BaseModel):
prompt: str
publisher: Optional[str] = None # Allow publisher in the body if needed
async def generate_ai_response(prompt: str, model: str, publisher: Optional[str]):
logger.debug(f"Received prompt: {prompt}, model: {model}, publisher: {publisher}")
# Configuration for AI endpoint
token = os.getenv("GITHUB_TOKEN")
endpoint = os.getenv("AI_SERVER_URL", "https://models.github.ai/inference")
default_publisher = os.getenv("DEFAULT_PUBLISHER", "abdullahalioo") # Fallback publisher
if not token:
logger.error("GitHub token not configured")
raise HTTPException(status_code=500, detail="GitHub token not configured")
# Use provided publisher or fallback to environment variable
final_publisher = publisher or default_publisher
if not final_publisher:
logger.error("Publisher is required")
raise HTTPException(status_code=400, detail="Publisher is required")
# Validate model
if model not in VALID_MODELS:
logger.error(f"Invalid model: {model}. Valid models: {VALID_MODELS}")
raise HTTPException(status_code=400, detail=f"Invalid model. Valid models: {VALID_MODELS}")
logger.debug(f"Using endpoint: {endpoint}, publisher: {final_publisher}")
client = AsyncOpenAI(base_url=endpoint, api_key=token)
try:
# Include publisher in the request payload
stream = await client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a helpful assistant named Orion, created by Abdullah Ali"},
{"role": "user", "content": prompt}
],
model=model,
temperature=1.0,
top_p=1.0,
stream=True,
extra_body={"publisher": final_publisher} # Add publisher to extra_body
)
async for chunk in stream:
if chunk.choices and chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
except Exception as err:
logger.error(f"AI generation failed: {str(err)}")
yield f"Error: {str(err)}"
raise HTTPException(status_code=500, detail=f"AI generation failed: {str(err)}")
@app.post("/generate", summary="Generate AI response", response_description="Streaming AI response")
async def generate_response(
model: str = Query("deepseek/DeepSeek-V3-0324", description="The AI model to use"),
prompt: Optional[str] = Query(None, description="The input text prompt for the AI"),
publisher: Optional[str] = Query(None, description="Publisher identifier (optional, defaults to DEFAULT_PUBLISHER env var)"),
request: Optional[GenerateRequest] = None
):
"""
Generate a streaming AI response based on the provided prompt, model, and publisher.
- **model**: The AI model to use (e.g., deepseek/DeepSeek-V3-0324)
- **prompt**: The input text prompt for the AI (query param or body)
- **publisher**: The publisher identifier (optional, defaults to DEFAULT_PUBLISHER env var)
"""
logger.debug(f"Request received - model: {model}, prompt: {prompt}, publisher: {publisher}, body: {request}")
# Determine prompt source: query parameter or request body
final_prompt = prompt if prompt is not None else (request.prompt if request is not None else None)
# Determine publisher source: query parameter or request body
final_publisher = publisher if publisher is not None else (request.publisher if request is not None else None)
if not final_prompt or not final_prompt.strip():
logger.error("Prompt cannot be empty")
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
if not model or not model.strip():
logger.error("Model cannot be empty")
raise HTTPException(status_code=400, detail="Model cannot be empty")
return StreamingResponse(
generate_ai_response(final_prompt, model, final_publisher),
media_type="text/event-stream"
)
@app.get("/models", summary="List available models")
async def list_models():
"""
List all available models supported by the AI server.
"""
return {"models": VALID_MODELS}
def get_app():
return app