File size: 1,531 Bytes
f7c0abb
b9e465f
fa8e2ce
d0fc55f
f7c0abb
 
 
2372d93
 
fa8e2ce
6025f1c
 
9ab6d04
6025f1c
3fdd2e3
2372d93
6025f1c
 
f7c0abb
d0fc55f
f7c0abb
2372d93
f7c0abb
 
9ab6d04
6025f1c
 
d0fc55f
f7c0abb
 
d0fc55f
045ef7e
 
f7c0abb
 
045ef7e
2372d93
f7c0abb
 
2372d93
 
b9e465f
9ab6d04
fa8e2ce
2372d93
93c4b1f
7a83ce6
20d0b59
387e225
1a836e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from openai import AsyncOpenAI

app = FastAPI()

async def generate_ai_response(prompt: str , model: str):
    # Configuration for unofficial GitHub AI endpoint
    token = os.getenv("GITHUB_TOKEN")
    if not token:
        raise HTTPException(status_code=500, detail="GitHub token not configured")
    
    endpoint = "https://models.github.ai/inference"
    

    client = AsyncOpenAI(base_url=endpoint, api_key=token)

    try:
        stream = await client.chat.completions.create(
            messages=[
                {"role": "system", "content": "You are a helpful assistant named Orion and made by Abdullah Ali"},
                {"role": "user", "content": prompt}
            ],
            model=model,
            temperature=1.0,
            top_p=1.0,
            stream=True
        )

        async for chunk in stream:
            if chunk.choices and chunk.choices[0].delta.content:
                yield chunk.choices[0].delta.content

    except Exception as err:
        yield f"Error: {str(err)}"
        raise HTTPException(status_code=500, detail="AI generation failed")

@app.post("/generate")
async def generate_response(prompt: str , model: str):
    if not prompt:
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")
    
    return StreamingResponse(
        generate_ai_response(prompt , model),
        media_type="text/event-stream"
    )

def get_app():
    return app