Spaces:
Running
Running
File size: 5,635 Bytes
f7c0abb 0ca6f76 e7b1f60 fa8e2ce 0ca6f76 256ed7f f7c0abb 05d6121 f9d8346 0ca6f76 5895a8c 746c270 e7b1f60 a980bb9 91228d1 a980bb9 b1e7267 746c270 a980bb9 05d6121 746c270 e7b1f60 746c270 0ca6f76 746c270 256ed7f 746c270 a980bb9 256ed7f b1e7267 746c270 a980bb9 746c270 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import os
import asyncio
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import StreamingResponse
from openai import AsyncOpenAI
from collections import defaultdict
app = FastAPI()
# Define available models
AVAILABLE_MODELS = {
"openai/gpt-4.1": "OpenAI GPT-4.1",
"openai/gpt-4.1-mini": "OpenAI GPT-4.1-mini",
"openai/gpt-4.1-nano": "OpenAI GPT-4.1-nano",
"openai/gpt-4o": "OpenAI GPT-4o",
"openai/gpt-4o-mini": "OpenAI GPT-4o mini",
"openai/o4-mini": "OpenAI o4-mini",
"microsoft/MAI-DS-R1": "MAI-DS-R1",
"microsoft/Phi-3.5-MoE-instruct": "Phi-3.5-MoE instruct (128k)",
"microsoft/Phi-3.5-mini-instruct": "Phi-3.5-mini instruct (128k)",
"microsoft/Phi-3.5-vision-instruct": "Phi-3.5-vision instruct (128k)",
"microsoft/Phi-3-medium-128k-instruct": "Phi-3-medium instruct (128k)",
"microsoft/Phi-3-medium-4k-instruct": "Phi-3-medium instruct (4k)",
"microsoft/Phi-3-mini-128k-instruct": "Phi-3-mini instruct (128k)",
"microsoft/Phi-3-small-128k-instruct": "Phi-3-small instruct (128k)",
"microsoft/Phi-3-small-8k-instruct": "Phi-3-small instruct (8k)",
"microsoft/Phi-4": "Phi-4",
"microsoft/Phi-4-mini-instruct": "Phi-4-mini-instruct",
"microsoft/Phi-4-multimodal-instruct": "Phi-4-multimodal-instruct",
"ai21-labs/AI21-Jamba-1.5-Large": "AI21 Jamba 1.5 Large",
"ai21-labs/AI21-Jamba-1.5-Mini": "AI21 Jamba 1.5 Mini",
"mistral-ai/Codestral-2501": "Codestral 25.01",
"cohere/Cohere-command-r": "Cohere Command R",
"cohere/Cohere-command-r-08-2024": "Cohere Command R 08-2024",
"cohere/Cohere-command-r-plus": "Cohere Command R+",
"cohere/Cohere-command-r-plus-08-2024": "Cohere Command R+ 08-2024",
"deepseek/DeepSeek-R1": "DeepSeek-R1",
"deepseek/DeepSeek-V3-0324": "DeepSeek-V3-0324",
"meta/Llama-3.2-11B-Vision-Instruct": "Llama-3.2-11B-Vision-Instruct",
"meta/Llama-3.2-90B-Vision-Instruct": "Llama-3.2-90B-Vision-Instruct",
"meta/Llama-3.3-70B-Instruct": "Llama-3.3-70B-Instruct",
"meta/Llama-4-Maverick-17B-128E-Instruct-FP8": "Llama 4 Maverick 17B 128E Instruct FP8",
"meta/Llama-4-Scout-17B-16E-Instruct": "Llama 4 Scout 17B 16E Instruct",
"meta/Meta-Llama-3.1-405B-Instruct": "Meta-Llama-3.1-405B-Instruct",
"meta/Meta-Llama-3.1-70B-Instruct": "Meta-Llama-3.1-70B-Instruct",
"meta/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct",
"meta/Meta-Llama-3-70B-Instruct": "Meta-Llama-3-70B-Instruct",
"meta/Meta-Llama-3-8B-Instruct": "Meta-Llama-3-8B-Instruct",
"mistral-ai/Ministral-3B": "Ministral 3B",
"mistral-ai/Mistral-Large-2411": "Mistral Large 24.11",
"mistral-ai/Mistral-Nemo": "Mistral Nemo",
"mistral-ai/Mistral-large-2407": "Mistral Large (2407)",
"mistral-ai/Mistral-small": "Mistral Small",
"cohere/cohere-command-a": "Cohere Command A",
"core42/jais-30b-chat": "JAIS 30b Chat",
"mistral-ai/mistral-small-2503": "Mistral Small 3.1"
}
# Chat memory (in-memory)
chat_histories = defaultdict(list)
MAX_HISTORY = 100 # limit memory to avoid crashes
# Generate response stream
async def generate_ai_response(chat_id: str, model: str):
token = os.getenv("GITHUB_TOKEN")
if not token:
raise HTTPException(status_code=500, detail="GitHub token not configured")
endpoint = "https://models.github.ai/inference"
if model not in AVAILABLE_MODELS:
raise HTTPException(
status_code=400,
detail=f"Model not available. Choose from: {', '.join(AVAILABLE_MODELS.keys())}"
)
client = AsyncOpenAI(base_url=endpoint, api_key=token)
try:
stream = await asyncio.wait_for(
client.chat.completions.create(
messages=chat_histories[chat_id],
model=model,
temperature=1.0,
top_p=1.0,
stream=True
),
timeout=60 # Prevent hangs
)
async for chunk in stream:
if chunk.choices and chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
yield content
chat_histories[chat_id].append({"role": "assistant", "content": content})
chat_histories[chat_id] = chat_histories[chat_id][-MAX_HISTORY:]
except asyncio.TimeoutError:
yield "Error: Response timed out."
raise HTTPException(status_code=504, detail="Model timed out.")
except Exception as err:
yield f"Error: {str(err)}"
raise HTTPException(status_code=500, detail="AI generation failed")
# Chat endpoint
@app.post("/generate")
async def generate_response(
chat_id: str = Query(..., description="Unique chat ID"),
prompt: str = Query(..., description="User message"),
model: str = Query("openai/gpt-4.1-mini", description="Model to use")
):
if not prompt:
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
chat_histories[chat_id].append({"role": "user", "content": prompt})
chat_histories[chat_id] = chat_histories[chat_id][-MAX_HISTORY:]
return StreamingResponse(
generate_ai_response(chat_id, model),
media_type="text/event-stream"
)
# Optional: reset chat history
@app.post("/reset")
async def reset_chat(chat_id: str = Query(..., description="ID of chat to reset")):
if chat_id in chat_histories:
chat_histories[chat_id].clear()
return {"message": f"Chat {chat_id} history reset."}
else:
raise HTTPException(status_code=404, detail="Chat ID not found")
# For ASGI servers like Uvicorn
def get_app():
return app |