File size: 1,682 Bytes
f7c0abb
b9e465f
fa8e2ce
dc76d86
d0fc55f
f7c0abb
 
 
dc76d86
 
fa004ce
dc76d86
 
fa8e2ce
6025f1c
 
fa004ce
 
6025f1c
b9e465f
6025f1c
 
f7c0abb
d0fc55f
f7c0abb
d1cb607
f7c0abb
 
fa004ce
6025f1c
 
d0fc55f
f7c0abb
 
d0fc55f
045ef7e
 
f7c0abb
 
045ef7e
b9e465f
f7c0abb
 
dc76d86
 
b9e465f
fa004ce
fa8e2ce
dc76d86
93c4b1f
7a83ce6
20d0b59
387e225
fa004ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from openai import AsyncOpenAI

app = FastAPI()

class GenerateRequest(BaseModel):
    prompt: str
    model: str  # e.g., "deepseek/DeepSeek-V3-0324"

async def generate_ai_response(prompt: str, model: str):
    token = os.getenv("GITHUB_TOKEN")
    if not token:
        raise HTTPException(status_code=500, detail="GitHub token not configured")

    # You can also make this endpoint dynamic if needed
    endpoint = "https://models.github.ai/inference"

    client = AsyncOpenAI(base_url=endpoint, api_key=token)

    try:
        stream = await client.chat.completions.create(
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": prompt}
            ],
            model=model,  # dynamically set model from user input
            temperature=1.0,
            top_p=1.0,
            stream=True
        )

        async for chunk in stream:
            if chunk.choices and chunk.choices[0].delta.content:
                yield chunk.choices[0].delta.content

    except Exception as err:
        yield f"Error: {str(err)}"
        raise HTTPException(status_code=500, detail="AI generation failed")

@app.post("/generate")
async def generate_response(request: GenerateRequest):
    if not request.prompt:
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")

    return StreamingResponse(
        generate_ai_response(request.prompt, request.model),
        media_type="text/event-stream"
    )

def get_app():
    return app