File size: 1,721 Bytes
f7c0abb
b9e465f
fa8e2ce
dc76d86
d0fc55f
f7c0abb
 
 
dc76d86
 
 
 
 
 
b9e465f
fa8e2ce
6025f1c
 
 
 
b9e465f
6025f1c
 
f7c0abb
d0fc55f
f7c0abb
d1cb607
f7c0abb
 
6025f1c
 
 
d0fc55f
f7c0abb
 
d0fc55f
045ef7e
 
f7c0abb
 
045ef7e
b9e465f
f7c0abb
 
dc76d86
 
b9e465f
045ef7e
fa8e2ce
dc76d86
93c4b1f
7a83ce6
20d0b59
387e225
b9e465f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from openai import AsyncOpenAI

app = FastAPI()

# Define a request model for the prompt and optional model name
class GenerateRequest(BaseModel):
    prompt: str
    model: str | None = "openai/gpt-4.1-mini"  # Default model

async def generate_ai_response(prompt: str, model: str):
    # Configuration for unofficial GitHub AI endpoint
    token = os.getenv("GITHUB_TOKEN")
    if not token:
        raise HTTPException(status_code=500, detail="GitHub token not configured")
    
    endpoint = "https://models.github.ai/inference"

    client = AsyncOpenAI(base_url=endpoint, api_key=token)

    try:
        stream = await client.chat.completions.create(
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": prompt}
            ],
            model=model,
            temperature=1.0,
            top_p=1.0,
            stream=True
        )

        async for chunk in stream:
            if chunk.choices and chunk.choices[0].delta.content:
                yield chunk.choices[0].delta.content

    except Exception as err:
        yield f"Error: {str(err)}"
        raise HTTPException(status_code=500, detail="AI generation failed")

@app.post("/generate")
async def generate_response(request: GenerateRequest):
    if not request.prompt:
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")
    
    return StreamingResponse(
        generate_ai_response(request.prompt, request.model),
        media_type="text/event-stream"
    )

def get_app():
    return app