File size: 1,969 Bytes
2c97dd8
d6be5f7
 
 
3ada3ad
 
d6be5f7
 
 
 
 
2c97dd8
d6be5f7
 
 
 
 
3ada3ad
 
 
 
 
 
 
 
 
d6be5f7
 
 
3ada3ad
 
 
 
 
d6be5f7
3ada3ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6be5f7
 
 
 
 
 
c430681
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from fastapi import FastAPI
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Load model and tokenizer (do this once at startup)
model_name = "Qwen/Qwen2.5-VL-7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,
    device_map="auto"
)

class Question(BaseModel):
    question: str

def generate_response_chunks(prompt: str):
    try:
        # Prepare input
        messages = [
            {"role": "system", "content": "You are Orion AI assistant..."},
            {"role": "user", "content": prompt}
        ]
        inputs = tokenizer.apply_chat_template(
            messages,
            tokenize=True,
            add_generation_prompt=True,
            return_tensors="pt"
        ).to(model.device)
        
        # Generate streamingly
        with torch.no_grad():
            for outputs in model.generate(
                inputs,
                max_new_tokens=512,
                do_sample=True,
                temperature=0.7,
                top_p=0.9,
                streamer=None,  # We'll implement manual streaming
                stopping_criteria=None
            ):
                chunk = outputs[0, inputs.shape[1]:]
                text = tokenizer.decode(chunk, skip_special_tokens=True)
                if text:
                    yield text
                    
    except Exception as e:
        yield f"Error occurred: {e}"

@app.post("/ask")
async def ask(question: Question):
    return StreamingResponse(
        generate_response_chunks(question.question),
        media_type="text/plain"
    )