Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,15 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
import json
|
4 |
-
import torch
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
from tqdm import tqdm
|
8 |
from pathlib import Path
|
9 |
import spaces
|
10 |
-
|
11 |
-
# PDF processing
|
12 |
-
import PyPDF2
|
13 |
-
|
14 |
-
# LLM and embeddings
|
15 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
16 |
-
from sentence_transformers import SentenceTransformer
|
17 |
-
|
18 |
-
# RAG components
|
19 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
20 |
-
from langchain_community.vectorstores import FAISS
|
21 |
-
from langchain.schema import Document
|
22 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
23 |
-
|
24 |
-
# Arabic text processing
|
25 |
-
import arabic_reshaper
|
26 |
-
from bidi.algorithm import get_display
|
27 |
-
|
28 |
-
# Evaluation
|
29 |
-
from rouge_score import rouge_scorer
|
30 |
-
import sacrebleu
|
31 |
-
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
32 |
-
import matplotlib.pyplot as plt
|
33 |
-
import seaborn as sns
|
34 |
-
from collections import defaultdict
|
35 |
-
|
36 |
-
# Gradio for the interface
|
37 |
import gradio as gr
|
38 |
|
39 |
-
#
|
|
|
|
|
|
|
40 |
def safe_tokenize(text):
|
41 |
"""Pure regex tokenizer with no NLTK dependency"""
|
42 |
if not text:
|
@@ -53,315 +26,6 @@ def detect_language(text):
|
|
53 |
is_arabic = len(arabic_chars) > len(text) * 0.5
|
54 |
return "arabic" if is_arabic else "english"
|
55 |
|
56 |
-
# Evaluation metrics
|
57 |
-
def calculate_bleu(prediction, reference):
|
58 |
-
"""Calculate BLEU score without any NLTK dependency"""
|
59 |
-
# Tokenize texts using our own tokenizer
|
60 |
-
pred_tokens = safe_tokenize(prediction.lower())
|
61 |
-
ref_tokens = [safe_tokenize(reference.lower())]
|
62 |
-
|
63 |
-
# If either is empty, return 0
|
64 |
-
if not pred_tokens or not ref_tokens[0]:
|
65 |
-
return {"bleu_1": 0, "bleu_2": 0, "bleu_4": 0}
|
66 |
-
|
67 |
-
# Get n-grams function
|
68 |
-
def get_ngrams(tokens, n):
|
69 |
-
return [tuple(tokens[i:i+n]) for i in range(len(tokens) - n + 1)]
|
70 |
-
|
71 |
-
# Calculate precision for each n-gram level
|
72 |
-
precisions = []
|
73 |
-
for n in range(1, 5): # 1-gram to 4-gram
|
74 |
-
if len(pred_tokens) < n:
|
75 |
-
precisions.append(0)
|
76 |
-
continue
|
77 |
-
|
78 |
-
pred_ngrams = get_ngrams(pred_tokens, n)
|
79 |
-
ref_ngrams = get_ngrams(ref_tokens[0], n)
|
80 |
-
|
81 |
-
# Count matches
|
82 |
-
matches = sum(1 for ng in pred_ngrams if ng in ref_ngrams)
|
83 |
-
|
84 |
-
# Calculate precision
|
85 |
-
if pred_ngrams:
|
86 |
-
precisions.append(matches / len(pred_ngrams))
|
87 |
-
else:
|
88 |
-
precisions.append(0)
|
89 |
-
|
90 |
-
# Return BLEU scores
|
91 |
-
return {
|
92 |
-
"bleu_1": precisions[0],
|
93 |
-
"bleu_2": (precisions[0] * precisions[1]) ** 0.5 if len(precisions) > 1 else 0,
|
94 |
-
"bleu_4": (precisions[0] * precisions[1] * precisions[2] * precisions[3]) ** 0.25 if len(precisions) > 3 else 0
|
95 |
-
}
|
96 |
-
|
97 |
-
def calculate_meteor(prediction, reference):
|
98 |
-
"""Simple word overlap metric as METEOR alternative"""
|
99 |
-
# Tokenize with our custom tokenizer
|
100 |
-
pred_tokens = set(safe_tokenize(prediction.lower()))
|
101 |
-
ref_tokens = set(safe_tokenize(reference.lower()))
|
102 |
-
|
103 |
-
# Calculate Jaccard similarity as METEOR alternative
|
104 |
-
if not pred_tokens or not ref_tokens:
|
105 |
-
return 0
|
106 |
-
|
107 |
-
intersection = len(pred_tokens.intersection(ref_tokens))
|
108 |
-
union = len(pred_tokens.union(ref_tokens))
|
109 |
-
|
110 |
-
return intersection / union if union > 0 else 0
|
111 |
-
|
112 |
-
def calculate_f1_precision_recall(prediction, reference):
|
113 |
-
"""Calculate word-level F1, precision, and recall with custom tokenizer"""
|
114 |
-
# Tokenize with our custom tokenizer
|
115 |
-
pred_tokens = set(safe_tokenize(prediction.lower()))
|
116 |
-
ref_tokens = set(safe_tokenize(reference.lower()))
|
117 |
-
|
118 |
-
# Calculate overlap
|
119 |
-
common = pred_tokens.intersection(ref_tokens)
|
120 |
-
|
121 |
-
# Calculate precision, recall, F1
|
122 |
-
precision = len(common) / len(pred_tokens) if pred_tokens else 0
|
123 |
-
recall = len(common) / len(ref_tokens) if ref_tokens else 0
|
124 |
-
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) else 0
|
125 |
-
|
126 |
-
return {'precision': precision, 'recall': recall, 'f1': f1}
|
127 |
-
|
128 |
-
def evaluate_retrieval_quality(contexts, query, language):
|
129 |
-
"""Evaluate the quality of retrieved contexts"""
|
130 |
-
# This is a placeholder implementation
|
131 |
-
return {
|
132 |
-
'language_match_ratio': 1.0,
|
133 |
-
'source_diversity': len(set([ctx.get('source', '') for ctx in contexts])) / max(1, len(contexts)),
|
134 |
-
'mrr': 1.0
|
135 |
-
}
|
136 |
-
|
137 |
-
# PDF Processing and Vector Store
|
138 |
-
def simple_process_pdfs(pdf_paths):
|
139 |
-
"""Process PDF documents and return document objects"""
|
140 |
-
documents = []
|
141 |
-
|
142 |
-
print(f"Processing PDFs: {pdf_paths}")
|
143 |
-
|
144 |
-
for pdf_path in pdf_paths:
|
145 |
-
try:
|
146 |
-
if not os.path.exists(pdf_path):
|
147 |
-
print(f"Warning: {pdf_path} does not exist")
|
148 |
-
continue
|
149 |
-
|
150 |
-
print(f"Processing {pdf_path}...")
|
151 |
-
text = ""
|
152 |
-
with open(pdf_path, 'rb') as file:
|
153 |
-
reader = PyPDF2.PdfReader(file)
|
154 |
-
for page in reader.pages:
|
155 |
-
page_text = page.extract_text()
|
156 |
-
if page_text: # If we got text from this page
|
157 |
-
text += page_text + "\n\n"
|
158 |
-
|
159 |
-
if text.strip(): # If we got some text
|
160 |
-
doc = Document(
|
161 |
-
page_content=text,
|
162 |
-
metadata={"source": pdf_path, "filename": os.path.basename(pdf_path)}
|
163 |
-
)
|
164 |
-
documents.append(doc)
|
165 |
-
print(f"Successfully processed: {pdf_path}")
|
166 |
-
else:
|
167 |
-
print(f"Warning: No text extracted from {pdf_path}")
|
168 |
-
except Exception as e:
|
169 |
-
print(f"Error processing {pdf_path}: {e}")
|
170 |
-
import traceback
|
171 |
-
traceback.print_exc()
|
172 |
-
|
173 |
-
print(f"Processed {len(documents)} PDF documents")
|
174 |
-
return documents
|
175 |
-
|
176 |
-
def create_vector_store(documents):
|
177 |
-
"""Split documents into chunks and create a FAISS vector store"""
|
178 |
-
# Text splitter for breaking documents into chunks
|
179 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
180 |
-
chunk_size=500,
|
181 |
-
chunk_overlap=50,
|
182 |
-
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
|
183 |
-
)
|
184 |
-
|
185 |
-
# Split documents into chunks
|
186 |
-
chunks = []
|
187 |
-
for doc in documents:
|
188 |
-
doc_chunks = text_splitter.split_text(doc.page_content)
|
189 |
-
# Preserve metadata for each chunk
|
190 |
-
chunks.extend([
|
191 |
-
Document(page_content=chunk, metadata=doc.metadata)
|
192 |
-
for chunk in doc_chunks
|
193 |
-
])
|
194 |
-
|
195 |
-
print(f"Created {len(chunks)} chunks from {len(documents)} documents")
|
196 |
-
|
197 |
-
# Create a proper embedding function for LangChain
|
198 |
-
embedding_function = HuggingFaceEmbeddings(
|
199 |
-
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
200 |
-
)
|
201 |
-
|
202 |
-
# Create FAISS index
|
203 |
-
vector_store = FAISS.from_documents(
|
204 |
-
chunks,
|
205 |
-
embedding_function
|
206 |
-
)
|
207 |
-
|
208 |
-
return vector_store
|
209 |
-
|
210 |
-
# Model Loading and RAG System
|
211 |
-
@spaces.GPU
|
212 |
-
def load_model_and_tokenizer():
|
213 |
-
"""Load the ALLaM-7B model and tokenizer with error handling"""
|
214 |
-
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
|
215 |
-
print(f"Loading model: {model_name}")
|
216 |
-
|
217 |
-
try:
|
218 |
-
# Load tokenizer with correct settings
|
219 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
220 |
-
model_name,
|
221 |
-
trust_remote_code=True,
|
222 |
-
use_fast=False
|
223 |
-
)
|
224 |
-
|
225 |
-
# Load model with appropriate settings for ALLaM
|
226 |
-
model = AutoModelForCausalLM.from_pretrained(
|
227 |
-
model_name,
|
228 |
-
torch_dtype=torch.bfloat16,
|
229 |
-
trust_remote_code=True,
|
230 |
-
device_map="auto",
|
231 |
-
)
|
232 |
-
|
233 |
-
print("Model loaded successfully!")
|
234 |
-
return model, tokenizer
|
235 |
-
|
236 |
-
except Exception as e:
|
237 |
-
print(f"Error loading model: {e}")
|
238 |
-
import traceback
|
239 |
-
traceback.print_exc()
|
240 |
-
raise Exception(f"Failed to load model: {e}")
|
241 |
-
|
242 |
-
def retrieve_context(query, vector_store, top_k=5):
|
243 |
-
"""Retrieve most relevant document chunks for a given query"""
|
244 |
-
# Search the vector store using similarity search
|
245 |
-
results = vector_store.similarity_search_with_score(query, k=top_k)
|
246 |
-
|
247 |
-
# Format the retrieved contexts
|
248 |
-
contexts = []
|
249 |
-
for doc, score in results:
|
250 |
-
contexts.append({
|
251 |
-
"content": doc.page_content,
|
252 |
-
"source": doc.metadata.get("source", "Unknown"),
|
253 |
-
"relevance_score": score
|
254 |
-
})
|
255 |
-
|
256 |
-
return contexts
|
257 |
-
|
258 |
-
@spaces.GPU
|
259 |
-
def generate_response(query, contexts, model, tokenizer, language="auto"):
|
260 |
-
"""Generate a response using retrieved contexts with ALLaM-specific formatting"""
|
261 |
-
# Auto-detect language if not specified
|
262 |
-
if language == "auto":
|
263 |
-
language = detect_language(query)
|
264 |
-
|
265 |
-
# Format the prompt based on language
|
266 |
-
if language == "arabic":
|
267 |
-
instruction = (
|
268 |
-
"أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم المعلومات التالية للإجابة على السؤال. "
|
269 |
-
"إذا لم تعرف الإجابة، فقل بأمانة إنك لا تعرف."
|
270 |
-
)
|
271 |
-
else: # english
|
272 |
-
instruction = (
|
273 |
-
"You are a virtual assistant for Saudi Vision 2030. Use the following information to answer the question. "
|
274 |
-
"If you don't know the answer, honestly say you don't know."
|
275 |
-
)
|
276 |
-
|
277 |
-
# Combine retrieved contexts
|
278 |
-
context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts])
|
279 |
-
|
280 |
-
# Format the prompt for ALLaM instruction format
|
281 |
-
prompt = f"""<s>[INST] {instruction}
|
282 |
-
|
283 |
-
Context:
|
284 |
-
{context_text}
|
285 |
-
|
286 |
-
Question: {query} [/INST]</s>"""
|
287 |
-
|
288 |
-
try:
|
289 |
-
# Generate response with appropriate parameters for ALLaM
|
290 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
291 |
-
|
292 |
-
# Generate with appropriate parameters
|
293 |
-
outputs = model.generate(
|
294 |
-
inputs.input_ids,
|
295 |
-
attention_mask=inputs.attention_mask,
|
296 |
-
max_new_tokens=512,
|
297 |
-
temperature=0.7,
|
298 |
-
top_p=0.9,
|
299 |
-
do_sample=True,
|
300 |
-
repetition_penalty=1.1
|
301 |
-
)
|
302 |
-
|
303 |
-
# Decode the response
|
304 |
-
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
305 |
-
|
306 |
-
# Extract just the answer part (after the instruction)
|
307 |
-
response = full_output.split("[/INST]")[-1].strip()
|
308 |
-
|
309 |
-
# If response is empty for some reason, return the full output
|
310 |
-
if not response:
|
311 |
-
response = full_output
|
312 |
-
|
313 |
-
return response
|
314 |
-
|
315 |
-
except Exception as e:
|
316 |
-
print(f"Error during generation: {e}")
|
317 |
-
# Fallback response
|
318 |
-
return "I apologize, but I encountered an error while generating a response."
|
319 |
-
|
320 |
-
# Assistant Class
|
321 |
-
class Vision2030Assistant:
|
322 |
-
def __init__(self, model, tokenizer, vector_store):
|
323 |
-
self.model = model
|
324 |
-
self.tokenizer = tokenizer
|
325 |
-
self.vector_store = vector_store
|
326 |
-
self.conversation_history = []
|
327 |
-
|
328 |
-
def answer(self, user_query):
|
329 |
-
"""Process a user query and return a response with sources"""
|
330 |
-
# Detect language
|
331 |
-
language = detect_language(user_query)
|
332 |
-
|
333 |
-
# Add user query to conversation history
|
334 |
-
self.conversation_history.append({"role": "user", "content": user_query})
|
335 |
-
|
336 |
-
# Get the full conversation context
|
337 |
-
conversation_context = "\n".join([
|
338 |
-
f"{'User' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
|
339 |
-
for msg in self.conversation_history[-6:] # Keep last 3 turns (6 messages)
|
340 |
-
])
|
341 |
-
|
342 |
-
# Enhance query with conversation context for better retrieval
|
343 |
-
enhanced_query = f"{conversation_context}\n{user_query}"
|
344 |
-
|
345 |
-
# Retrieve relevant contexts
|
346 |
-
contexts = retrieve_context(enhanced_query, self.vector_store, top_k=5)
|
347 |
-
|
348 |
-
# Generate response
|
349 |
-
response = generate_response(user_query, contexts, self.model, self.tokenizer, language)
|
350 |
-
|
351 |
-
# Add response to conversation history
|
352 |
-
self.conversation_history.append({"role": "assistant", "content": response})
|
353 |
-
|
354 |
-
# Also return sources for transparency
|
355 |
-
sources = [ctx.get("source", "Unknown") for ctx in contexts]
|
356 |
-
unique_sources = list(set(sources))
|
357 |
-
|
358 |
-
return response, unique_sources, contexts
|
359 |
-
|
360 |
-
def reset_conversation(self):
|
361 |
-
"""Reset the conversation history"""
|
362 |
-
self.conversation_history = []
|
363 |
-
return "Conversation has been reset."
|
364 |
-
|
365 |
# Comprehensive evaluation dataset
|
366 |
comprehensive_evaluation_data = [
|
367 |
# === Overview ===
|
@@ -407,352 +71,386 @@ comprehensive_evaluation_data = [
|
|
407 |
}
|
408 |
]
|
409 |
|
410 |
-
#
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
os.makedirs(vector_store_dir, exist_ok=True)
|
419 |
-
|
420 |
-
if os.path.exists(os.path.join(vector_store_dir, "index.faiss")):
|
421 |
-
print("Loading existing vector store...")
|
422 |
-
embedding_function = HuggingFaceEmbeddings(
|
423 |
-
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
424 |
-
)
|
425 |
-
vector_store = FAISS.load_local(vector_store_dir, embedding_function)
|
426 |
-
else:
|
427 |
-
print("Creating new vector store...")
|
428 |
-
documents = simple_process_pdfs(pdf_files)
|
429 |
-
if not documents:
|
430 |
-
raise ValueError("No documents were processed successfully. Cannot continue.")
|
431 |
-
vector_store = create_vector_store(documents)
|
432 |
-
vector_store.save_local(vector_store_dir)
|
433 |
-
|
434 |
-
# Load model and tokenizer
|
435 |
-
model, tokenizer = load_model_and_tokenizer()
|
436 |
-
|
437 |
-
# Initialize assistant
|
438 |
-
assistant = Vision2030Assistant(model, tokenizer, vector_store)
|
439 |
-
|
440 |
-
return assistant
|
441 |
-
|
442 |
-
def evaluate_response(query, response, reference):
|
443 |
-
"""Evaluate a single response against a reference"""
|
444 |
-
# Calculate metrics
|
445 |
-
rouge = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
446 |
-
rouge_scores = rouge.score(response, reference)
|
447 |
-
|
448 |
-
bleu_scores = calculate_bleu(response, reference)
|
449 |
-
meteor = calculate_meteor(response, reference)
|
450 |
-
word_metrics = calculate_f1_precision_recall(response, reference)
|
451 |
-
|
452 |
-
# Format results
|
453 |
-
evaluation_results = {
|
454 |
-
"ROUGE-1": f"{rouge_scores['rouge1'].fmeasure:.4f}",
|
455 |
-
"ROUGE-2": f"{rouge_scores['rouge2'].fmeasure:.4f}",
|
456 |
-
"ROUGE-L": f"{rouge_scores['rougeL'].fmeasure:.4f}",
|
457 |
-
"BLEU-1": f"{bleu_scores['bleu_1']:.4f}",
|
458 |
-
"BLEU-4": f"{bleu_scores['bleu_4']:.4f}",
|
459 |
-
"METEOR": f"{meteor:.4f}",
|
460 |
-
"Word Precision": f"{word_metrics['precision']:.4f}",
|
461 |
-
"Word Recall": f"{word_metrics['recall']:.4f}",
|
462 |
-
"Word F1": f"{word_metrics['f1']:.4f}"
|
463 |
-
}
|
464 |
-
|
465 |
-
return evaluation_results
|
466 |
-
|
467 |
-
@spaces.GPU
|
468 |
-
def run_evaluation_on_sample(assistant, sample_index=0):
|
469 |
-
"""Run evaluation on a selected sample from the evaluation dataset"""
|
470 |
-
if sample_index < 0 or sample_index >= len(comprehensive_evaluation_data):
|
471 |
-
return "Invalid sample index", "", "", {}
|
472 |
-
|
473 |
-
# Get the sample
|
474 |
-
sample = comprehensive_evaluation_data[sample_index]
|
475 |
-
query = sample["query"]
|
476 |
-
reference = sample["reference"]
|
477 |
-
category = sample["category"]
|
478 |
-
language = sample["language"]
|
479 |
-
|
480 |
-
# Reset conversation and get response
|
481 |
-
assistant.reset_conversation()
|
482 |
-
response, sources, contexts = assistant.answer(query)
|
483 |
-
|
484 |
-
# Evaluate response
|
485 |
-
evaluation_results = evaluate_response(query, response, reference)
|
486 |
-
|
487 |
-
return query, response, reference, evaluation_results, sources, category, language
|
488 |
-
|
489 |
-
def qualitative_evaluation_interface(assistant=None):
|
490 |
-
"""Create a Gradio interface for qualitative evaluation"""
|
491 |
-
|
492 |
-
# If assistant is None, create a simplified interface
|
493 |
-
if assistant is None:
|
494 |
-
with gr.Blocks(title="Vision 2030 Assistant - Initialization Error") as interface:
|
495 |
-
gr.Markdown("# Vision 2030 Assistant - Initialization Error")
|
496 |
-
gr.Markdown("There was an error initializing the assistant. Please check the logs for details.")
|
497 |
-
gr.Textbox(label="Status", value="System initialization failed")
|
498 |
-
return interface
|
499 |
-
|
500 |
-
sample_options = [f"{i+1}. {item['query'][:50]}..." for i, item in enumerate(comprehensive_evaluation_data)]
|
501 |
-
|
502 |
-
with gr.Blocks(title="Vision 2030 Assistant - Qualitative Evaluation") as interface:
|
503 |
-
gr.Markdown("# Vision 2030 Assistant - Qualitative Evaluation")
|
504 |
-
gr.Markdown("This interface allows you to evaluate the Vision 2030 Assistant on predefined samples or your own queries.")
|
505 |
|
506 |
-
|
507 |
-
|
|
|
|
|
|
|
508 |
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
|
|
|
|
|
|
|
|
|
|
514 |
|
515 |
-
|
|
|
516 |
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
sample_category = gr.Textbox(label="Category")
|
521 |
-
sample_language = gr.Textbox(label="Language")
|
522 |
-
|
523 |
-
with gr.Column():
|
524 |
-
sample_response = gr.Textbox(label="Assistant Response")
|
525 |
-
sample_reference = gr.Textbox(label="Reference Answer")
|
526 |
-
sample_sources = gr.Textbox(label="Sources Used")
|
527 |
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
533 |
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
|
|
|
|
538 |
)
|
539 |
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
|
|
544 |
)
|
545 |
|
546 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
547 |
|
548 |
-
|
549 |
-
|
|
|
|
|
|
|
|
|
|
|
550 |
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
555 |
|
556 |
-
|
557 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
558 |
|
559 |
-
|
|
|
560 |
|
561 |
-
|
562 |
-
|
563 |
-
|
|
|
|
|
|
|
|
|
|
|
564 |
)
|
565 |
|
566 |
-
|
567 |
-
|
568 |
-
reset_button = gr.Button("Reset Conversation")
|
569 |
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
if not
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
inputs=[sample_dropdown],
|
592 |
-
outputs=[sample_query, sample_response, sample_reference, metrics_display,
|
593 |
-
sample_sources, sample_category, sample_language]
|
594 |
-
)
|
595 |
-
|
596 |
-
sample_dropdown.change(
|
597 |
-
handle_sample_selection,
|
598 |
-
inputs=[sample_dropdown],
|
599 |
-
outputs=[sample_query, sample_response, sample_reference, metrics_display,
|
600 |
-
sample_sources, sample_category, sample_language]
|
601 |
-
)
|
602 |
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
if not query:
|
607 |
-
return "Please enter a query", "", {}
|
608 |
|
609 |
-
#
|
610 |
-
|
|
|
|
|
|
|
611 |
|
612 |
-
#
|
613 |
-
|
614 |
-
sources_str = ", ".join(sources)
|
615 |
|
616 |
-
#
|
617 |
-
|
618 |
-
if reference:
|
619 |
-
metrics = evaluate_response(query, response, reference)
|
620 |
|
621 |
-
|
622 |
-
|
623 |
-
custom_eval_button.click(
|
624 |
-
handle_custom_evaluation,
|
625 |
-
inputs=[custom_query, custom_reference],
|
626 |
-
outputs=[custom_response, custom_sources, custom_metrics]
|
627 |
-
)
|
628 |
-
|
629 |
-
# Conversation mode event handlers
|
630 |
-
@spaces.GPU
|
631 |
-
def handle_conversation(message, history):
|
632 |
-
if not message:
|
633 |
-
return history, "", ""
|
634 |
|
635 |
-
#
|
636 |
-
|
637 |
-
sources_str = ", ".join(sources)
|
638 |
|
639 |
-
#
|
640 |
-
|
|
|
641 |
|
642 |
-
return
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
reset_button.click(
|
655 |
-
reset_conv,
|
656 |
-
inputs=[],
|
657 |
-
outputs=[chatbot, conv_input, conv_sources]
|
658 |
-
)
|
659 |
-
|
660 |
-
return interface
|
661 |
|
662 |
-
# Main function
|
663 |
def main():
|
664 |
-
#
|
665 |
-
|
666 |
-
gr.Markdown("# Vision 2030 Assistant")
|
667 |
-
gr.Markdown("System is initializing. This may take a few minutes...")
|
668 |
-
loading_status = gr.Textbox(value="Loading system...", label="Status")
|
669 |
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
print("Starting system initialization...")
|
675 |
-
assistant = initialize_system()
|
676 |
-
|
677 |
-
print("Creating interface...")
|
678 |
-
full_interface = qualitative_evaluation_interface(assistant)
|
679 |
-
|
680 |
-
print("System ready!")
|
681 |
-
# Will replace the loading interface
|
682 |
-
return full_interface
|
683 |
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
688 |
|
689 |
-
|
690 |
-
|
691 |
-
gr.
|
692 |
-
gr.Markdown("There was an error initializing the assistant.")
|
693 |
-
|
694 |
-
# Display error details
|
695 |
-
gr.Textbox(
|
696 |
-
value=f"Error: {str(e)}",
|
697 |
-
label="Error Details",
|
698 |
-
lines=5
|
699 |
-
)
|
700 |
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
- langchain and langchain-community
|
709 |
|
710 |
-
|
711 |
|
712 |
-
|
713 |
-
""
|
|
|
|
|
714 |
|
715 |
-
|
716 |
-
|
717 |
-
results = []
|
718 |
-
|
719 |
-
# Check dependencies
|
720 |
-
for lib in ["torch", "transformers", "sentencepiece", "accelerate"]:
|
721 |
-
try:
|
722 |
-
module = __import__(lib)
|
723 |
-
if hasattr(module, "__version__"):
|
724 |
-
results.append(f"✓ {lib}: {module.__version__}")
|
725 |
-
else:
|
726 |
-
results.append(f"✓ {lib}: Installed")
|
727 |
-
except ImportError:
|
728 |
-
results.append(f"✗ {lib}: Not installed")
|
729 |
-
|
730 |
-
# Check GPU
|
731 |
-
try:
|
732 |
-
import torch
|
733 |
-
results.append(f"CUDA available: {torch.cuda.is_available()}")
|
734 |
-
if torch.cuda.is_available():
|
735 |
-
results.append(f"GPU: {torch.cuda.get_device_name(0)}")
|
736 |
-
results.append(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
|
737 |
-
except:
|
738 |
-
results.append("Could not check GPU status")
|
739 |
-
|
740 |
-
# Check PDFs
|
741 |
for pdf_file in ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]:
|
742 |
if os.path.exists(pdf_file):
|
743 |
size = os.path.getsize(pdf_file) / (1024 * 1024) # Size in MB
|
744 |
-
|
745 |
else:
|
746 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
747 |
|
748 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
749 |
|
750 |
-
|
751 |
-
system_status = gr.Textbox(label="System Status", lines=15)
|
752 |
-
check_btn.click(check_system, inputs=[], outputs=[system_status])
|
753 |
|
754 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
755 |
|
756 |
if __name__ == "__main__":
|
757 |
demo = main()
|
|
|
758 |
demo.launch()
|
|
|
1 |
import os
|
2 |
import re
|
3 |
import json
|
|
|
|
|
|
|
4 |
from tqdm import tqdm
|
5 |
from pathlib import Path
|
6 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import gradio as gr
|
8 |
|
9 |
+
# WARNING: Don't import torch, cuda, or GPU-related modules at the top level
|
10 |
+
# They must ONLY be imported inside functions decorated with @spaces.GPU
|
11 |
+
|
12 |
+
# Helper functions that don't use GPU
|
13 |
def safe_tokenize(text):
|
14 |
"""Pure regex tokenizer with no NLTK dependency"""
|
15 |
if not text:
|
|
|
26 |
is_arabic = len(arabic_chars) > len(text) * 0.5
|
27 |
return "arabic" if is_arabic else "english"
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# Comprehensive evaluation dataset
|
30 |
comprehensive_evaluation_data = [
|
31 |
# === Overview ===
|
|
|
71 |
}
|
72 |
]
|
73 |
|
74 |
+
# RAG Service class
|
75 |
+
class Vision2030Service:
|
76 |
+
def __init__(self):
|
77 |
+
self.initialized = False
|
78 |
+
self.model = None
|
79 |
+
self.tokenizer = None
|
80 |
+
self.vector_store = None
|
81 |
+
self.conversation_history = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
@spaces.GPU
|
84 |
+
def initialize(self):
|
85 |
+
"""Initialize the system - ALL GPU operations must happen here"""
|
86 |
+
if self.initialized:
|
87 |
+
return True
|
88 |
|
89 |
+
try:
|
90 |
+
# Import all GPU-dependent libraries only inside this function
|
91 |
+
import torch
|
92 |
+
import PyPDF2
|
93 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
94 |
+
from sentence_transformers import SentenceTransformer
|
95 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
96 |
+
from langchain_community.vectorstores import FAISS
|
97 |
+
from langchain.schema import Document
|
98 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
99 |
|
100 |
+
# Define paths for PDF files
|
101 |
+
pdf_files = ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]
|
102 |
|
103 |
+
# Process PDFs and create vector store
|
104 |
+
vector_store_dir = "vector_stores"
|
105 |
+
os.makedirs(vector_store_dir, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
if os.path.exists(os.path.join(vector_store_dir, "index.faiss")):
|
108 |
+
print("Loading existing vector store...")
|
109 |
+
embedding_function = HuggingFaceEmbeddings(
|
110 |
+
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
111 |
+
)
|
112 |
+
self.vector_store = FAISS.load_local(vector_store_dir, embedding_function)
|
113 |
+
else:
|
114 |
+
print("Creating new vector store...")
|
115 |
+
# Process PDFs
|
116 |
+
documents = []
|
117 |
+
for pdf_path in pdf_files:
|
118 |
+
if not os.path.exists(pdf_path):
|
119 |
+
print(f"Warning: {pdf_path} does not exist")
|
120 |
+
continue
|
121 |
+
|
122 |
+
print(f"Processing {pdf_path}...")
|
123 |
+
text = ""
|
124 |
+
with open(pdf_path, 'rb') as file:
|
125 |
+
reader = PyPDF2.PdfReader(file)
|
126 |
+
for page in reader.pages:
|
127 |
+
page_text = page.extract_text()
|
128 |
+
if page_text:
|
129 |
+
text += page_text + "\n\n"
|
130 |
+
|
131 |
+
if text.strip():
|
132 |
+
doc = Document(
|
133 |
+
page_content=text,
|
134 |
+
metadata={"source": pdf_path, "filename": os.path.basename(pdf_path)}
|
135 |
+
)
|
136 |
+
documents.append(doc)
|
137 |
+
|
138 |
+
if not documents:
|
139 |
+
raise ValueError("No documents were processed successfully.")
|
140 |
+
|
141 |
+
# Split into chunks
|
142 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
143 |
+
chunk_size=500,
|
144 |
+
chunk_overlap=50,
|
145 |
+
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
|
146 |
+
)
|
147 |
+
|
148 |
+
chunks = []
|
149 |
+
for doc in documents:
|
150 |
+
doc_chunks = text_splitter.split_text(doc.page_content)
|
151 |
+
chunks.extend([
|
152 |
+
Document(page_content=chunk, metadata=doc.metadata)
|
153 |
+
for chunk in doc_chunks
|
154 |
+
])
|
155 |
+
|
156 |
+
# Create vector store
|
157 |
+
embedding_function = HuggingFaceEmbeddings(
|
158 |
+
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
159 |
+
)
|
160 |
+
self.vector_store = FAISS.from_documents(chunks, embedding_function)
|
161 |
+
self.vector_store.save_local(vector_store_dir)
|
162 |
|
163 |
+
# Load model
|
164 |
+
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
|
165 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
166 |
+
model_name,
|
167 |
+
trust_remote_code=True,
|
168 |
+
use_fast=False
|
169 |
)
|
170 |
|
171 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
172 |
+
model_name,
|
173 |
+
torch_dtype=torch.bfloat16,
|
174 |
+
trust_remote_code=True,
|
175 |
+
device_map="auto",
|
176 |
)
|
177 |
|
178 |
+
self.initialized = True
|
179 |
+
return True
|
180 |
+
|
181 |
+
except Exception as e:
|
182 |
+
import traceback
|
183 |
+
print(f"Initialization error: {e}")
|
184 |
+
print(traceback.format_exc())
|
185 |
+
return False
|
186 |
+
|
187 |
+
@spaces.GPU
|
188 |
+
def retrieve_context(self, query, top_k=5):
|
189 |
+
"""Retrieve contexts from vector store"""
|
190 |
+
# Import must be inside the function to avoid CUDA init in main process
|
191 |
+
|
192 |
+
if not self.initialized:
|
193 |
+
return []
|
194 |
+
|
195 |
+
try:
|
196 |
+
results = self.vector_store.similarity_search_with_score(query, k=top_k)
|
197 |
|
198 |
+
contexts = []
|
199 |
+
for doc, score in results:
|
200 |
+
contexts.append({
|
201 |
+
"content": doc.page_content,
|
202 |
+
"source": doc.metadata.get("source", "Unknown"),
|
203 |
+
"relevance_score": score
|
204 |
+
})
|
205 |
|
206 |
+
return contexts
|
207 |
+
except Exception as e:
|
208 |
+
print(f"Error retrieving context: {e}")
|
209 |
+
return []
|
210 |
+
|
211 |
+
@spaces.GPU
|
212 |
+
def generate_response(self, query, contexts, language="auto"):
|
213 |
+
"""Generate response using the model"""
|
214 |
+
# Import must be inside the function to avoid CUDA init in main process
|
215 |
+
import torch
|
216 |
+
|
217 |
+
if not self.initialized or self.model is None or self.tokenizer is None:
|
218 |
+
return "I'm still initializing. Please try again in a moment."
|
219 |
|
220 |
+
try:
|
221 |
+
# Auto-detect language if not specified
|
222 |
+
if language == "auto":
|
223 |
+
language = detect_language(query)
|
224 |
+
|
225 |
+
# Format the prompt based on language
|
226 |
+
if language == "arabic":
|
227 |
+
instruction = (
|
228 |
+
"أنت مساعد ��فتراضي يهتم برؤية السعودية 2030. استخدم المعلومات التالية للإجابة على السؤال. "
|
229 |
+
"إذا لم تعرف الإجابة، فقل بأمانة إنك لا تعرف."
|
230 |
+
)
|
231 |
+
else: # english
|
232 |
+
instruction = (
|
233 |
+
"You are a virtual assistant for Saudi Vision 2030. Use the following information to answer the question. "
|
234 |
+
"If you don't know the answer, honestly say you don't know."
|
235 |
+
)
|
236 |
+
|
237 |
+
# Combine retrieved contexts
|
238 |
+
context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts])
|
239 |
+
|
240 |
+
# Format the prompt for ALLaM instruction format
|
241 |
+
prompt = f"""<s>[INST] {instruction}
|
242 |
+
|
243 |
+
Context:
|
244 |
+
{context_text}
|
245 |
+
|
246 |
+
Question: {query} [/INST]</s>"""
|
247 |
|
248 |
+
# Generate response
|
249 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
250 |
|
251 |
+
outputs = self.model.generate(
|
252 |
+
inputs.input_ids,
|
253 |
+
attention_mask=inputs.attention_mask,
|
254 |
+
max_new_tokens=512,
|
255 |
+
temperature=0.7,
|
256 |
+
top_p=0.9,
|
257 |
+
do_sample=True,
|
258 |
+
repetition_penalty=1.1
|
259 |
)
|
260 |
|
261 |
+
# Decode the response
|
262 |
+
full_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
263 |
|
264 |
+
# Extract just the answer part (after the instruction)
|
265 |
+
response = full_output.split("[/INST]")[-1].strip()
|
266 |
+
|
267 |
+
# If response is empty for some reason, return the full output
|
268 |
+
if not response:
|
269 |
+
response = full_output
|
270 |
+
|
271 |
+
return response
|
272 |
+
|
273 |
+
except Exception as e:
|
274 |
+
import traceback
|
275 |
+
print(f"Error generating response: {e}")
|
276 |
+
print(traceback.format_exc())
|
277 |
+
return f"Sorry, I encountered an error while generating a response."
|
278 |
+
|
279 |
+
@spaces.GPU
|
280 |
+
def answer_question(self, query):
|
281 |
+
"""Process a user query and return a response with sources"""
|
282 |
+
if not self.initialized:
|
283 |
+
if not self.initialize():
|
284 |
+
return "System initialization failed. Please check the logs.", []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
+
try:
|
287 |
+
# Add user query to conversation history
|
288 |
+
self.conversation_history.append({"role": "user", "content": query})
|
|
|
|
|
289 |
|
290 |
+
# Get the full conversation context
|
291 |
+
conversation_context = "\n".join([
|
292 |
+
f"{'User' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
|
293 |
+
for msg in self.conversation_history[-6:] # Keep last 3 turns
|
294 |
+
])
|
295 |
|
296 |
+
# Enhance query with conversation context
|
297 |
+
enhanced_query = f"{conversation_context}\n{query}"
|
|
|
298 |
|
299 |
+
# Retrieve relevant contexts
|
300 |
+
contexts = self.retrieve_context(enhanced_query, top_k=5)
|
|
|
|
|
301 |
|
302 |
+
# Generate response
|
303 |
+
response = self.generate_response(query, contexts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
+
# Add response to conversation history
|
306 |
+
self.conversation_history.append({"role": "assistant", "content": response})
|
|
|
307 |
|
308 |
+
# Get sources
|
309 |
+
sources = [ctx.get("source", "Unknown") for ctx in contexts]
|
310 |
+
unique_sources = list(set(sources))
|
311 |
|
312 |
+
return response, unique_sources
|
313 |
+
except Exception as e:
|
314 |
+
import traceback
|
315 |
+
print(f"Error answering question: {e}")
|
316 |
+
print(traceback.format_exc())
|
317 |
+
return f"Sorry, I encountered an error: {str(e)}", []
|
318 |
+
|
319 |
+
def reset_conversation(self):
|
320 |
+
"""Reset the conversation history"""
|
321 |
+
self.conversation_history = []
|
322 |
+
return "Conversation has been reset."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
+
# Main function with Gradio UI
|
325 |
def main():
|
326 |
+
# Create the Vision 2030 service
|
327 |
+
service = Vision2030Service()
|
|
|
|
|
|
|
328 |
|
329 |
+
# Build the Gradio interface
|
330 |
+
with gr.Blocks(title="Vision 2030 Assistant") as demo:
|
331 |
+
gr.Markdown("# Vision 2030 Assistant")
|
332 |
+
gr.Markdown("Ask questions about Saudi Vision 2030 in English or Arabic")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
+
with gr.Tab("Chat"):
|
335 |
+
chatbot = gr.Chatbot()
|
336 |
+
msg = gr.Textbox(label="Your question", placeholder="Ask about Vision 2030...")
|
337 |
+
clear = gr.Button("Clear History")
|
338 |
+
|
339 |
+
@spaces.GPU
|
340 |
+
def respond(message, history):
|
341 |
+
if not message:
|
342 |
+
return history, ""
|
343 |
+
|
344 |
+
response, sources = service.answer_question(message)
|
345 |
+
sources_text = ", ".join(sources) if sources else "No specific sources"
|
346 |
+
|
347 |
+
# Format the response to include sources
|
348 |
+
full_response = f"{response}\n\nSources: {sources_text}"
|
349 |
+
|
350 |
+
return history + [[message, full_response]], ""
|
351 |
+
|
352 |
+
def reset_chat():
|
353 |
+
service.reset_conversation()
|
354 |
+
return [], "Conversation history has been reset."
|
355 |
+
|
356 |
+
msg.submit(respond, [msg, chatbot], [chatbot, msg])
|
357 |
+
clear.click(reset_chat, None, [chatbot, msg])
|
358 |
|
359 |
+
with gr.Tab("System Status"):
|
360 |
+
init_btn = gr.Button("Initialize System")
|
361 |
+
status_box = gr.Textbox(label="Status", value="System not initialized")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
|
363 |
+
@spaces.GPU
|
364 |
+
def initialize_system():
|
365 |
+
success = service.initialize()
|
366 |
+
if success:
|
367 |
+
return "System initialized successfully!"
|
368 |
+
else:
|
369 |
+
return "System initialization failed. Check logs for details."
|
|
|
370 |
|
371 |
+
init_btn.click(initialize_system, None, status_box)
|
372 |
|
373 |
+
# PDF Check section
|
374 |
+
gr.Markdown("### PDF Status")
|
375 |
+
pdf_btn = gr.Button("Check PDF Files")
|
376 |
+
pdf_status = gr.Textbox(label="PDF Files")
|
377 |
|
378 |
+
def check_pdfs():
|
379 |
+
result = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
for pdf_file in ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]:
|
381 |
if os.path.exists(pdf_file):
|
382 |
size = os.path.getsize(pdf_file) / (1024 * 1024) # Size in MB
|
383 |
+
result.append(f"{pdf_file}: Found ({size:.2f} MB)")
|
384 |
else:
|
385 |
+
result.append(f"{pdf_file}: Not found")
|
386 |
+
return "\n".join(result)
|
387 |
+
|
388 |
+
pdf_btn.click(check_pdfs, None, pdf_status)
|
389 |
+
|
390 |
+
# System check section
|
391 |
+
gr.Markdown("### Dependencies")
|
392 |
+
sys_btn = gr.Button("Check Dependencies")
|
393 |
+
sys_status = gr.Textbox(label="Dependencies Status")
|
394 |
+
|
395 |
+
@spaces.GPU
|
396 |
+
def check_dependencies():
|
397 |
+
result = []
|
398 |
+
|
399 |
+
# Safe imports inside GPU-decorated function
|
400 |
+
try:
|
401 |
+
import torch
|
402 |
+
result.append(f"✓ PyTorch: {torch.__version__}")
|
403 |
+
except ImportError:
|
404 |
+
result.append("✗ PyTorch: Not installed")
|
405 |
+
|
406 |
+
try:
|
407 |
+
import transformers
|
408 |
+
result.append(f"✓ Transformers: {transformers.__version__}")
|
409 |
+
except ImportError:
|
410 |
+
result.append("✗ Transformers: Not installed")
|
411 |
|
412 |
+
try:
|
413 |
+
import sentencepiece
|
414 |
+
result.append("✓ SentencePiece: Installed")
|
415 |
+
except ImportError:
|
416 |
+
result.append("✗ SentencePiece: Not installed")
|
417 |
+
|
418 |
+
try:
|
419 |
+
import accelerate
|
420 |
+
result.append(f"✓ Accelerate: {accelerate.__version__}")
|
421 |
+
except ImportError:
|
422 |
+
result.append("✗ Accelerate: Not installed")
|
423 |
+
|
424 |
+
try:
|
425 |
+
import langchain
|
426 |
+
result.append(f"�� LangChain: {langchain.__version__}")
|
427 |
+
except ImportError:
|
428 |
+
result.append("✗ LangChain: Not installed")
|
429 |
+
|
430 |
+
try:
|
431 |
+
import langchain_community
|
432 |
+
result.append(f"✓ LangChain Community: {langchain_community.__version__}")
|
433 |
+
except ImportError:
|
434 |
+
result.append("✗ LangChain Community: Not installed")
|
435 |
+
|
436 |
+
return "\n".join(result)
|
437 |
|
438 |
+
sys_btn.click(check_dependencies, None, sys_status)
|
|
|
|
|
439 |
|
440 |
+
with gr.Tab("Sample Questions"):
|
441 |
+
gr.Markdown("### Sample Questions to Try")
|
442 |
+
|
443 |
+
sample_questions = []
|
444 |
+
|
445 |
+
for item in comprehensive_evaluation_data:
|
446 |
+
sample_questions.append(item["query"])
|
447 |
+
|
448 |
+
questions_md = "\n".join([f"- {q}" for q in sample_questions])
|
449 |
+
gr.Markdown(questions_md)
|
450 |
+
|
451 |
+
return demo
|
452 |
|
453 |
if __name__ == "__main__":
|
454 |
demo = main()
|
455 |
+
demo.queue()
|
456 |
demo.launch()
|