Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,101 +1,226 @@
|
|
1 |
-
# Force install sentencepiece
|
2 |
-
import sys
|
3 |
-
import subprocess
|
4 |
-
|
5 |
-
def install_package(package):
|
6 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
7 |
-
|
8 |
-
try:
|
9 |
-
import sentencepiece
|
10 |
-
print("SentencePiece is already installed")
|
11 |
-
except ImportError:
|
12 |
-
print("Installing SentencePiece...")
|
13 |
-
install_package("sentencepiece==0.1.99")
|
14 |
-
print("SentencePiece installed successfully")
|
15 |
-
|
16 |
-
# Import other required libraries
|
17 |
-
import gradio as gr
|
18 |
import os
|
19 |
import re
|
20 |
import torch
|
|
|
21 |
import numpy as np
|
22 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
23 |
import PyPDF2
|
24 |
-
|
|
|
|
|
25 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
26 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
27 |
from langchain_community.vectorstores import FAISS
|
28 |
from langchain.schema import Document
|
29 |
from langchain.embeddings import HuggingFaceEmbeddings
|
30 |
-
import spaces
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
assistant = None
|
36 |
-
model_type = "primary" # Track if we're using primary or fallback model
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
language = detect_language(user_query)
|
50 |
|
51 |
-
#
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
if self.model_type == "primary":
|
68 |
-
response = generate_response_primary(user_query, contexts, self.model, self.tokenizer, language)
|
69 |
-
else:
|
70 |
-
response = generate_response_fallback(user_query, contexts, self.model, self.tokenizer, language)
|
71 |
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
-
#
|
76 |
-
|
77 |
-
unique_sources = list(set(sources))
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
89 |
-
"""Reset the conversation history"""
|
90 |
-
self.conversation_history = []
|
91 |
-
return "Conversation has been reset."
|
92 |
-
|
93 |
-
# Helper functions
|
94 |
-
def detect_language(text):
|
95 |
-
"""Detect if text is primarily Arabic or English"""
|
96 |
-
arabic_chars = re.findall(r'[\u0600-\u06FF]', text)
|
97 |
-
is_arabic = len(arabic_chars) > len(text) * 0.5
|
98 |
-
return "arabic" if is_arabic else "english"
|
99 |
|
100 |
def retrieve_context(query, vector_store, top_k=5):
|
101 |
"""Retrieve most relevant document chunks for a given query"""
|
@@ -113,9 +238,8 @@ def retrieve_context(query, vector_store, top_k=5):
|
|
113 |
|
114 |
return contexts
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
"""Generate a response using ALLaM model"""
|
119 |
# Auto-detect language if not specified
|
120 |
if language == "auto":
|
121 |
language = detect_language(query)
|
@@ -175,403 +299,332 @@ Question: {query} [/INST]</s>"""
|
|
175 |
# Fallback response
|
176 |
return "I apologize, but I encountered an error while generating a response."
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
# Format the prompt based on language
|
186 |
-
if language == "arabic":
|
187 |
-
system_prompt = (
|
188 |
-
"أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم السياق التالي للإجابة على السؤال: "
|
189 |
-
)
|
190 |
-
else:
|
191 |
-
system_prompt = (
|
192 |
-
"You are a virtual assistant for Saudi Vision 2030. Use the following context to answer the question: "
|
193 |
-
)
|
194 |
-
|
195 |
-
# Combine retrieved contexts
|
196 |
-
context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts])
|
197 |
-
|
198 |
-
# Format prompt for fallback model (simpler format)
|
199 |
-
prompt = f"{system_prompt}\n\nContext:\n{context_text}\n\nQuestion: {query}\n\nAnswer:"
|
200 |
-
|
201 |
-
try:
|
202 |
-
# Generate with fallback model
|
203 |
-
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(model.device)
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
temperature=0.7,
|
210 |
-
top_p=0.9,
|
211 |
-
do_sample=True,
|
212 |
-
pad_token_id=tokenizer.eos_token_id
|
213 |
-
)
|
214 |
|
215 |
-
#
|
216 |
-
|
217 |
|
218 |
-
#
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
print(f"Error during fallback generation: {e}")
|
223 |
-
return "I apologize, but I encountered an error while generating a response with the fallback model."
|
224 |
-
|
225 |
-
def process_pdf_files(pdf_files):
|
226 |
-
"""Process PDF files and create documents"""
|
227 |
-
documents = []
|
228 |
-
|
229 |
-
for pdf_file in pdf_files:
|
230 |
-
try:
|
231 |
-
# Save the uploaded file temporarily
|
232 |
-
temp_path = f"temp_{pdf_file.name}"
|
233 |
-
with open(temp_path, "wb") as f:
|
234 |
-
f.write(pdf_file.read())
|
235 |
-
|
236 |
-
# Extract text
|
237 |
-
text = ""
|
238 |
-
with open(temp_path, 'rb') as file:
|
239 |
-
reader = PyPDF2.PdfReader(file)
|
240 |
-
for page in reader.pages:
|
241 |
-
page_text = page.extract_text()
|
242 |
-
if page_text:
|
243 |
-
text += page_text + "\n\n"
|
244 |
-
|
245 |
-
# Clean up
|
246 |
-
os.remove(temp_path)
|
247 |
-
|
248 |
-
if text.strip(): # If we got some text
|
249 |
-
doc = Document(
|
250 |
-
page_content=text,
|
251 |
-
metadata={"source": pdf_file.name, "filename": pdf_file.name}
|
252 |
-
)
|
253 |
-
documents.append(doc)
|
254 |
-
print(f"Successfully processed: {pdf_file.name}")
|
255 |
-
else:
|
256 |
-
print(f"Warning: No text extracted from {pdf_file.name}")
|
257 |
-
except Exception as e:
|
258 |
-
print(f"Error processing {pdf_file.name}: {e}")
|
259 |
-
|
260 |
-
print(f"Processed {len(documents)} PDF documents")
|
261 |
-
return documents
|
262 |
-
|
263 |
-
def create_vector_store(documents):
|
264 |
-
"""Create a vector store from documents"""
|
265 |
-
# Text splitter for breaking documents into chunks
|
266 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
267 |
-
chunk_size=500,
|
268 |
-
chunk_overlap=50,
|
269 |
-
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
|
270 |
-
)
|
271 |
-
|
272 |
-
# Split documents into chunks
|
273 |
-
chunks = []
|
274 |
-
for doc in documents:
|
275 |
-
doc_chunks = text_splitter.split_text(doc.page_content)
|
276 |
-
# Preserve metadata for each chunk
|
277 |
-
chunks.extend([
|
278 |
-
Document(page_content=chunk, metadata=doc.metadata)
|
279 |
-
for chunk in doc_chunks
|
280 |
])
|
281 |
-
|
282 |
-
print(f"Created {len(chunks)} chunks from {len(documents)} documents")
|
283 |
-
|
284 |
-
# Create embedding function
|
285 |
-
embedding_function = HuggingFaceEmbeddings(
|
286 |
-
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
287 |
-
)
|
288 |
-
|
289 |
-
# Create FAISS index
|
290 |
-
vector_store = FAISS.from_documents(chunks, embedding_function)
|
291 |
-
return vector_store
|
292 |
-
|
293 |
-
# Attempt to create mock documents if none are available yet
|
294 |
-
def create_mock_documents():
|
295 |
-
"""Create mock documents about Vision 2030"""
|
296 |
-
documents = []
|
297 |
-
|
298 |
-
# Sample content about Vision 2030 in both languages
|
299 |
-
samples = [
|
300 |
-
{
|
301 |
-
"content": "رؤية السعودية 2030 هي خطة استراتيجية تهدف إلى تنويع الاقتصاد السعودي وتقليل الاعتماد على النفط مع تطوير قطاعات مختلفة مثل الصحة والتعليم والسياحة.",
|
302 |
-
"source": "vision2030_overview_ar.txt"
|
303 |
-
},
|
304 |
-
{
|
305 |
-
"content": "Saudi Vision 2030 is a strategic framework aiming to diversify Saudi Arabia's economy and reduce dependence on oil, while developing sectors like health, education, and tourism.",
|
306 |
-
"source": "vision2030_overview_en.txt"
|
307 |
-
},
|
308 |
-
{
|
309 |
-
"content": "تشمل الأهداف الاقتصادية لرؤية 2030 زيادة مساهمة القطاع الخاص من 40% إلى 65% من الناتج المحلي الإجمالي، ورفع نسبة الصادرات غير النفطية من 16% إلى 50% من الناتج المحلي الإجمالي غير النفطي، وخفض البطالة إلى 7%.",
|
310 |
-
"source": "economic_goals_ar.txt"
|
311 |
-
},
|
312 |
-
{
|
313 |
-
"content": "The economic goals of Vision 2030 include increasing private sector contribution from 40% to 65% of GDP, raising non-oil exports from 16% to 50%, and reducing unemployment from 11.6% to 7%.",
|
314 |
-
"source": "economic_goals_en.txt"
|
315 |
-
},
|
316 |
-
{
|
317 |
-
"content": "تركز رؤية 2030 على زيادة مشاركة المرأة في سوق العمل من 22% إلى 30% بحلول عام 2030، مع توفير فرص متساوية في التعليم والعمل.",
|
318 |
-
"source": "women_empowerment_ar.txt"
|
319 |
-
},
|
320 |
-
{
|
321 |
-
"content": "Vision 2030 emphasizes increasing women's participation in the workforce from 22% to 30% by 2030, while providing equal opportunities in education and employment.",
|
322 |
-
"source": "women_empowerment_en.txt"
|
323 |
-
}
|
324 |
-
]
|
325 |
-
|
326 |
-
# Create documents from samples
|
327 |
-
for sample in samples:
|
328 |
-
doc = Document(
|
329 |
-
page_content=sample["content"],
|
330 |
-
metadata={"source": sample["source"], "filename": sample["source"]}
|
331 |
-
)
|
332 |
-
documents.append(doc)
|
333 |
-
|
334 |
-
print(f"Created {len(documents)} mock documents")
|
335 |
-
return documents
|
336 |
-
|
337 |
-
@spaces.GPU
|
338 |
-
def load_primary_model():
|
339 |
-
"""Load the ALLaM-7B model with error handling"""
|
340 |
-
global model, tokenizer, model_type
|
341 |
-
|
342 |
-
if model is not None and tokenizer is not None and model_type == "primary":
|
343 |
-
return "Primary model (ALLaM-7B) already loaded"
|
344 |
-
|
345 |
-
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
|
346 |
-
print(f"Loading primary model: {model_name}")
|
347 |
-
|
348 |
-
try:
|
349 |
-
# Try to import sentencepiece explicitly first
|
350 |
-
import sentencepiece as spm
|
351 |
-
print("SentencePiece imported successfully")
|
352 |
|
353 |
-
#
|
354 |
-
|
355 |
-
model_name,
|
356 |
-
trust_remote_code=True,
|
357 |
-
use_fast=False
|
358 |
-
)
|
359 |
|
360 |
-
#
|
361 |
-
|
362 |
-
model_name,
|
363 |
-
torch_dtype=torch.bfloat16,
|
364 |
-
trust_remote_code=True,
|
365 |
-
device_map="auto",
|
366 |
-
)
|
367 |
|
368 |
-
|
369 |
-
|
370 |
|
371 |
-
|
372 |
-
|
373 |
-
print(error_msg)
|
374 |
-
return error_msg
|
375 |
-
|
376 |
-
@spaces.GPU
|
377 |
-
def load_fallback_model():
|
378 |
-
"""Load the fallback model (BLOOM-7B1) when ALLaM fails"""
|
379 |
-
global model, tokenizer, model_type
|
380 |
-
|
381 |
-
if model is not None and tokenizer is not None and model_type == "fallback":
|
382 |
-
return "Fallback model already loaded"
|
383 |
-
|
384 |
-
try:
|
385 |
-
print("Loading fallback model: BLOOM-7B1...")
|
386 |
|
387 |
-
#
|
388 |
-
|
389 |
-
|
390 |
-
"bigscience/bloom-7b1",
|
391 |
-
torch_dtype=torch.bfloat16,
|
392 |
-
device_map="auto",
|
393 |
-
load_in_8bit=True # Reduce memory usage
|
394 |
-
)
|
395 |
|
396 |
-
|
397 |
-
return "Fallback model (BLOOM-7B1) loaded successfully!"
|
398 |
-
except Exception as e:
|
399 |
-
return f"Fallback model loading failed: {e}"
|
400 |
-
|
401 |
-
def load_mbart_model():
|
402 |
-
"""Load mBART as a second fallback option"""
|
403 |
-
global model, tokenizer, model_type
|
404 |
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
410 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
411 |
-
model_name,
|
412 |
-
torch_dtype=torch.float16,
|
413 |
-
device_map="auto",
|
414 |
-
load_in_8bit=True
|
415 |
-
)
|
416 |
-
|
417 |
-
model_type = "mbart"
|
418 |
-
return "mBART multilingual model loaded successfully!"
|
419 |
-
except Exception as e:
|
420 |
-
return f"mBART model loading failed: {e}"
|
421 |
|
422 |
-
#
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
|
432 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
|
434 |
-
#
|
435 |
-
if
|
436 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
|
438 |
-
#
|
439 |
-
|
|
|
440 |
|
441 |
# Initialize assistant
|
442 |
-
|
|
|
443 |
|
444 |
-
return
|
445 |
|
446 |
-
def
|
447 |
-
"""
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
|
456 |
-
|
457 |
-
|
|
|
458 |
|
459 |
-
#
|
460 |
-
|
461 |
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
|
468 |
-
|
469 |
-
return [(message, "Please load a model and process documents first (or use mock documents for testing).")]
|
470 |
-
|
471 |
-
response = assistant.answer(message)
|
472 |
-
history.append((message, response))
|
473 |
-
return history
|
474 |
|
475 |
def reset_chat():
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
return "
|
480 |
-
|
481 |
-
reset_message = assistant.reset_conversation()
|
482 |
-
return reset_message
|
483 |
|
484 |
-
def
|
485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
|
487 |
# Create Gradio interface
|
488 |
-
with gr.Blocks(title="Vision 2030
|
489 |
-
gr.Markdown("# Vision 2030 Virtual Assistant")
|
490 |
-
gr.Markdown("
|
491 |
|
492 |
-
with gr.Tab("
|
493 |
-
gr.
|
494 |
-
|
495 |
-
with gr.Column():
|
496 |
-
primary_btn = gr.Button("Load ALLaM-7B Model (Primary)", variant="primary")
|
497 |
-
primary_output = gr.Textbox(label="Primary Model Status")
|
498 |
-
primary_btn.click(load_primary_model, inputs=[], outputs=primary_output)
|
499 |
-
|
500 |
-
with gr.Column():
|
501 |
-
fallback_btn = gr.Button("Load BLOOM-7B1 (Fallback)", variant="secondary")
|
502 |
-
fallback_output = gr.Textbox(label="Fallback Model Status")
|
503 |
-
fallback_btn.click(load_fallback_model, inputs=[], outputs=fallback_output)
|
504 |
-
|
505 |
-
with gr.Column():
|
506 |
-
mbart_btn = gr.Button("Load mBART (Alternative)", variant="secondary")
|
507 |
-
mbart_output = gr.Textbox(label="mBART Model Status")
|
508 |
-
mbart_btn.click(load_mbart_model, inputs=[], outputs=mbart_output)
|
509 |
|
510 |
-
|
511 |
-
with gr.Row():
|
512 |
-
with gr.Column():
|
513 |
-
pdf_files = gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDF Documents")
|
514 |
-
process_btn = gr.Button("Process Documents", variant="primary")
|
515 |
-
process_output = gr.Textbox(label="Processing Status")
|
516 |
-
process_btn.click(process_pdfs, inputs=[pdf_files], outputs=process_output)
|
517 |
-
|
518 |
-
with gr.Column():
|
519 |
-
mock_btn = gr.Button("Use Mock Documents (for testing)", variant="secondary")
|
520 |
-
mock_output = gr.Textbox(label="Mock Documents Status")
|
521 |
-
mock_btn.click(use_mock_documents, inputs=[], outputs=mock_output)
|
522 |
-
|
523 |
-
gr.Markdown("## Troubleshooting")
|
524 |
-
restart_btn = gr.Button("Restart Application", variant="secondary")
|
525 |
-
restart_output = gr.Textbox(label="Restart Status")
|
526 |
-
restart_btn.click(restart_factory, inputs=[], outputs=restart_output)
|
527 |
-
restart_btn.click(None, [], None, _js="() => {setTimeout(() => {location.reload()}, 5000)}")
|
528 |
|
529 |
-
with gr.Tab("Chat"):
|
530 |
-
chatbot = gr.Chatbot(label="Conversation", height=500)
|
531 |
-
|
532 |
with gr.Row():
|
533 |
-
|
534 |
-
label="Ask
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
575 |
|
576 |
-
# Launch the
|
577 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import re
|
3 |
import torch
|
4 |
+
import gradio as gr
|
5 |
import numpy as np
|
6 |
from pathlib import Path
|
7 |
+
from tqdm import tqdm
|
8 |
+
import json
|
9 |
+
|
10 |
+
# PDF processing
|
11 |
import PyPDF2
|
12 |
+
|
13 |
+
# LLM and embeddings
|
14 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
15 |
from sentence_transformers import SentenceTransformer
|
16 |
+
|
17 |
+
# RAG components
|
18 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
19 |
from langchain_community.vectorstores import FAISS
|
20 |
from langchain.schema import Document
|
21 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
22 |
|
23 |
+
# Arabic text processing
|
24 |
+
import arabic_reshaper
|
25 |
+
from bidi.algorithm import get_display
|
|
|
|
|
26 |
|
27 |
+
# Evaluation
|
28 |
+
from rouge_score import rouge_scorer
|
29 |
+
|
30 |
+
# Helper functions from your notebook
|
31 |
+
def detect_language(text):
|
32 |
+
"""Detect if text is primarily Arabic or English"""
|
33 |
+
# Simple heuristic: count Arabic characters
|
34 |
+
arabic_chars = re.findall(r'[\u0600-\u06FF]', text)
|
35 |
+
is_arabic = len(arabic_chars) > len(text) * 0.5
|
36 |
+
return "arabic" if is_arabic else "english"
|
37 |
+
|
38 |
+
def safe_tokenize(text):
|
39 |
+
"""Pure regex tokenizer with no NLTK dependency"""
|
40 |
+
if not text:
|
41 |
+
return []
|
42 |
+
# Replace punctuation with spaces around them
|
43 |
+
text = re.sub(r'([.,!?;:()\[\]{}"\'/\\])', r' \1 ', text)
|
44 |
+
# Split on whitespace and filter empty strings
|
45 |
+
return [token for token in re.split(r'\s+', text.lower()) if token]
|
46 |
+
|
47 |
+
# Evaluation metric functions
|
48 |
+
def calculate_bleu(prediction, reference):
|
49 |
+
"""Calculate BLEU score without any NLTK dependency"""
|
50 |
+
# Tokenize texts using our own tokenizer
|
51 |
+
pred_tokens = safe_tokenize(prediction.lower())
|
52 |
+
ref_tokens = [safe_tokenize(reference.lower())]
|
53 |
+
|
54 |
+
# If either is empty, return 0
|
55 |
+
if not pred_tokens or not ref_tokens[0]:
|
56 |
+
return {"bleu_1": 0, "bleu_2": 0, "bleu_4": 0}
|
57 |
+
|
58 |
+
# Get n-grams function
|
59 |
+
def get_ngrams(tokens, n):
|
60 |
+
return [tuple(tokens[i:i+n]) for i in range(len(tokens) - n + 1)]
|
61 |
+
|
62 |
+
# Calculate precision for each n-gram level
|
63 |
+
precisions = []
|
64 |
+
for n in range(1, 5): # 1-gram to 4-gram
|
65 |
+
if len(pred_tokens) < n:
|
66 |
+
precisions.append(0)
|
67 |
+
continue
|
68 |
+
|
69 |
+
pred_ngrams = get_ngrams(pred_tokens, n)
|
70 |
+
ref_ngrams = get_ngrams(ref_tokens[0], n)
|
71 |
|
72 |
+
# Count matches
|
73 |
+
matches = sum(1 for ng in pred_ngrams if ng in ref_ngrams)
|
|
|
74 |
|
75 |
+
# Calculate precision
|
76 |
+
if pred_ngrams:
|
77 |
+
precisions.append(matches / len(pred_ngrams))
|
78 |
+
else:
|
79 |
+
precisions.append(0)
|
80 |
+
|
81 |
+
# Return BLEU scores
|
82 |
+
return {
|
83 |
+
"bleu_1": precisions[0],
|
84 |
+
"bleu_2": (precisions[0] * precisions[1]) ** 0.5 if len(precisions) > 1 else 0,
|
85 |
+
"bleu_4": (precisions[0] * precisions[1] * precisions[2] * precisions[3]) ** 0.25 if len(precisions) > 3 else 0
|
86 |
+
}
|
87 |
+
|
88 |
+
def calculate_meteor(prediction, reference):
|
89 |
+
"""Simple word overlap metric as METEOR alternative"""
|
90 |
+
# Tokenize with our custom tokenizer
|
91 |
+
pred_tokens = set(safe_tokenize(prediction.lower()))
|
92 |
+
ref_tokens = set(safe_tokenize(reference.lower()))
|
93 |
+
|
94 |
+
# Calculate Jaccard similarity as METEOR alternative
|
95 |
+
if not pred_tokens or not ref_tokens:
|
96 |
+
return 0
|
97 |
|
98 |
+
intersection = len(pred_tokens.intersection(ref_tokens))
|
99 |
+
union = len(pred_tokens.union(ref_tokens))
|
100 |
+
|
101 |
+
return intersection / union if union > 0 else 0
|
102 |
+
|
103 |
+
def calculate_f1_precision_recall(prediction, reference):
|
104 |
+
"""Calculate word-level F1, precision, and recall with custom tokenizer"""
|
105 |
+
# Tokenize with our custom tokenizer
|
106 |
+
pred_tokens = set(safe_tokenize(prediction.lower()))
|
107 |
+
ref_tokens = set(safe_tokenize(reference.lower()))
|
108 |
+
|
109 |
+
# Calculate overlap
|
110 |
+
common = pred_tokens.intersection(ref_tokens)
|
111 |
+
|
112 |
+
# Calculate precision, recall, F1
|
113 |
+
precision = len(common) / len(pred_tokens) if pred_tokens else 0
|
114 |
+
recall = len(common) / len(ref_tokens) if ref_tokens else 0
|
115 |
+
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) else 0
|
116 |
+
|
117 |
+
return {'precision': precision, 'recall': recall, 'f1': f1}
|
118 |
+
|
119 |
+
# Load PDFs and create vector store
|
120 |
+
def process_pdfs(pdf_files):
|
121 |
+
"""Process uploaded PDF documents and return document objects"""
|
122 |
+
documents = []
|
123 |
+
|
124 |
+
for pdf_path in pdf_files:
|
125 |
+
try:
|
126 |
+
text = ""
|
127 |
+
with open(pdf_path, 'rb') as file:
|
128 |
+
reader = PyPDF2.PdfReader(file)
|
129 |
+
for page in reader.pages:
|
130 |
+
page_text = page.extract_text()
|
131 |
+
if page_text: # If we got text from this page
|
132 |
+
text += page_text + "\n\n"
|
133 |
+
|
134 |
+
if text.strip(): # If we got some text
|
135 |
+
doc = Document(
|
136 |
+
page_content=text,
|
137 |
+
metadata={"source": pdf_path, "filename": os.path.basename(pdf_path)}
|
138 |
+
)
|
139 |
+
documents.append(doc)
|
140 |
+
print(f"Successfully processed: {pdf_path}")
|
141 |
+
else:
|
142 |
+
print(f"Warning: No text extracted from {pdf_path}")
|
143 |
+
except Exception as e:
|
144 |
+
print(f"Error processing {pdf_path}: {e}")
|
145 |
+
|
146 |
+
print(f"Processed {len(documents)} PDF documents")
|
147 |
+
return documents
|
148 |
+
|
149 |
+
def create_vector_store(documents):
|
150 |
+
"""Split documents into chunks and create a FAISS vector store"""
|
151 |
+
# Text splitter for breaking documents into chunks
|
152 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
153 |
+
chunk_size=500,
|
154 |
+
chunk_overlap=50,
|
155 |
+
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
|
156 |
+
)
|
157 |
+
|
158 |
+
# Split documents into chunks
|
159 |
+
chunks = []
|
160 |
+
for doc in documents:
|
161 |
+
doc_chunks = text_splitter.split_text(doc.page_content)
|
162 |
+
# Preserve metadata for each chunk
|
163 |
+
chunks.extend([
|
164 |
+
Document(page_content=chunk, metadata=doc.metadata)
|
165 |
+
for chunk in doc_chunks
|
166 |
])
|
167 |
+
|
168 |
+
print(f"Created {len(chunks)} chunks from {len(documents)} documents")
|
169 |
+
|
170 |
+
# Create a proper embedding function for LangChain
|
171 |
+
embedding_function = HuggingFaceEmbeddings(
|
172 |
+
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
173 |
+
)
|
174 |
+
|
175 |
+
# Create FAISS index
|
176 |
+
vector_store = FAISS.from_documents(
|
177 |
+
chunks,
|
178 |
+
embedding_function
|
179 |
+
)
|
180 |
+
|
181 |
+
return vector_store
|
182 |
+
|
183 |
+
def load_model_and_tokenizer():
|
184 |
+
"""Load the ALLaM-7B model and tokenizer with error handling"""
|
185 |
+
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
|
186 |
+
print(f"Loading model: {model_name}")
|
187 |
+
|
188 |
+
try:
|
189 |
+
# First attempt with AutoTokenizer
|
190 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
191 |
+
model_name,
|
192 |
+
trust_remote_code=True,
|
193 |
+
use_fast=False
|
194 |
+
)
|
195 |
|
196 |
+
# Load model with appropriate settings for ALLaM
|
197 |
+
model = AutoModelForCausalLM.from_pretrained(
|
198 |
+
model_name,
|
199 |
+
torch_dtype=torch.bfloat16, # Use bfloat16 for better compatibility
|
200 |
+
trust_remote_code=True,
|
201 |
+
device_map="auto",
|
202 |
+
)
|
203 |
|
204 |
+
print("Model loaded successfully with AutoTokenizer!")
|
|
|
|
|
|
|
|
|
205 |
|
206 |
+
except Exception as e:
|
207 |
+
print(f"First loading attempt failed: {e}")
|
208 |
+
print("Trying alternative loading approach...")
|
209 |
|
210 |
+
# Try with specific tokenizer class if the first attempt fails
|
211 |
+
from transformers import LlamaTokenizer
|
|
|
212 |
|
213 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_name)
|
214 |
+
model = AutoModelForCausalLM.from_pretrained(
|
215 |
+
model_name,
|
216 |
+
torch_dtype=torch.float16,
|
217 |
+
trust_remote_code=True,
|
218 |
+
device_map="auto",
|
219 |
+
)
|
220 |
|
221 |
+
print("Model loaded successfully with LlamaTokenizer!")
|
222 |
|
223 |
+
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
def retrieve_context(query, vector_store, top_k=5):
|
226 |
"""Retrieve most relevant document chunks for a given query"""
|
|
|
238 |
|
239 |
return contexts
|
240 |
|
241 |
+
def generate_response(query, contexts, model, tokenizer, language="auto"):
|
242 |
+
"""Generate a response using retrieved contexts with ALLaM-specific formatting"""
|
|
|
243 |
# Auto-detect language if not specified
|
244 |
if language == "auto":
|
245 |
language = detect_language(query)
|
|
|
299 |
# Fallback response
|
300 |
return "I apologize, but I encountered an error while generating a response."
|
301 |
|
302 |
+
# Assistant class
|
303 |
+
class Vision2030Assistant:
|
304 |
+
def __init__(self, model, tokenizer, vector_store):
|
305 |
+
self.model = model
|
306 |
+
self.tokenizer = tokenizer
|
307 |
+
self.vector_store = vector_store
|
308 |
+
self.conversation_history = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
+
def answer(self, user_query):
|
311 |
+
"""Process a user query and return a response with sources"""
|
312 |
+
# Detect language
|
313 |
+
language = detect_language(user_query)
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
+
# Add user query to conversation history
|
316 |
+
self.conversation_history.append({"role": "user", "content": user_query})
|
317 |
|
318 |
+
# Get the full conversation context
|
319 |
+
conversation_context = "\n".join([
|
320 |
+
f"{'User' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
|
321 |
+
for msg in self.conversation_history[-6:] # Keep last 3 turns (6 messages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
+
# Enhance query with conversation context for better retrieval
|
325 |
+
enhanced_query = f"{conversation_context}\n{user_query}"
|
|
|
|
|
|
|
|
|
326 |
|
327 |
+
# Retrieve relevant contexts
|
328 |
+
contexts = retrieve_context(enhanced_query, self.vector_store, top_k=5)
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
+
# Generate response
|
331 |
+
response = generate_response(user_query, contexts, self.model, self.tokenizer, language)
|
332 |
|
333 |
+
# Add response to conversation history
|
334 |
+
self.conversation_history.append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
|
336 |
+
# Also return sources for transparency
|
337 |
+
sources = [ctx.get("source", "Unknown") for ctx in contexts]
|
338 |
+
unique_sources = list(set(sources))
|
|
|
|
|
|
|
|
|
|
|
339 |
|
340 |
+
return response, unique_sources, contexts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
+
def reset_conversation(self):
|
343 |
+
"""Reset the conversation history"""
|
344 |
+
self.conversation_history = []
|
345 |
+
return "Conversation has been reset."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
+
# Sample evaluation data (subset)
|
348 |
+
sample_evaluation_data = [
|
349 |
+
{
|
350 |
+
"query": "ما هي رؤية السعودية 2030؟",
|
351 |
+
"reference": "رؤية السعودية 2030 هي خطة استراتيجية تهدف إلى تنويع الاقتصاد السعودي وتقليل الاعتماد على النفط مع تطوير قطاعات مختلفة مثل الصحة والتعليم والسياحة.",
|
352 |
+
"category": "overview",
|
353 |
+
"language": "arabic"
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"query": "What is Saudi Vision 2030?",
|
357 |
+
"reference": "Saudi Vision 2030 is a strategic framework aiming to diversify Saudi Arabia's economy and reduce dependence on oil, while developing sectors like health, education, and tourism.",
|
358 |
+
"category": "overview",
|
359 |
+
"language": "english"
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"query": "ما هي الأهداف الاقتصادية لرؤية 2030؟",
|
363 |
+
"reference": "تشمل الأهداف الاقتصادية زيادة مساهمة القطاع الخاص إلى 65%، وزيادة الصادرات غير النفطية إلى 50% من الناتج المحلي غير النفطي، وخفض البطالة إلى 7%.",
|
364 |
+
"category": "economic",
|
365 |
+
"language": "arabic"
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"query": "What are the economic goals of Vision 2030?",
|
369 |
+
"reference": "The economic goals of Vision 2030 include increasing private sector contribution from 40% to 65% of GDP, raising non-oil exports from 16% to 50%, reducing unemployment from 11.6% to 7%.",
|
370 |
+
"category": "economic",
|
371 |
+
"language": "english"
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"query": "How does Vision 2030 support small and medium enterprises (SMEs)?",
|
375 |
+
"reference": "Vision 2030 supports SMEs by increasing their GDP contribution, facilitating access to funding, and reducing regulatory obstacles.",
|
376 |
+
"category": "economic",
|
377 |
+
"language": "english"
|
378 |
+
}
|
379 |
+
]
|
380 |
+
|
381 |
+
# Global variables for storing state
|
382 |
+
ASSISTANT = None
|
383 |
+
MODEL = None
|
384 |
+
TOKENIZER = None
|
385 |
+
VECTOR_STORE = None
|
386 |
+
PDF_PATHS = ["vision2030_docs/saudi_vision203.pdf", "vision2030_docs/saudi_vision2030_ar.pdf"]
|
387 |
+
|
388 |
+
# Initialize evaluation
|
389 |
+
rouge_scorer_instance = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
390 |
+
|
391 |
+
def initialize_system():
|
392 |
+
global MODEL, TOKENIZER, VECTOR_STORE, ASSISTANT
|
393 |
|
394 |
+
# Try to load from saved files first
|
395 |
+
if os.path.exists("data/vision2030_vector_store"):
|
396 |
+
print("Loading vector store from saved file...")
|
397 |
+
try:
|
398 |
+
embedding_function = HuggingFaceEmbeddings(
|
399 |
+
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
400 |
+
)
|
401 |
+
VECTOR_STORE = FAISS.load_local("data/vision2030_vector_store", embedding_function)
|
402 |
+
print("Vector store loaded successfully!")
|
403 |
+
except Exception as e:
|
404 |
+
print(f"Error loading vector store: {e}")
|
405 |
+
VECTOR_STORE = None
|
406 |
|
407 |
+
# If vector store not loaded, process PDFs and create it
|
408 |
+
if VECTOR_STORE is None:
|
409 |
+
print("Processing PDF documents...")
|
410 |
+
vision2030_docs = process_pdfs(PDF_PATHS)
|
411 |
+
|
412 |
+
if not vision2030_docs:
|
413 |
+
return "Error: No documents were processed. Cannot continue."
|
414 |
+
|
415 |
+
print("Creating vector store...")
|
416 |
+
VECTOR_STORE = create_vector_store(vision2030_docs)
|
417 |
+
|
418 |
+
# Save the vector store for future use
|
419 |
+
os.makedirs("data", exist_ok=True)
|
420 |
+
VECTOR_STORE.save_local("data/vision2030_vector_store")
|
421 |
+
print("Vector store saved to data/vision2030_vector_store")
|
422 |
|
423 |
+
# Load model and tokenizer
|
424 |
+
print("Loading ALLaM-7B model...")
|
425 |
+
MODEL, TOKENIZER = load_model_and_tokenizer()
|
426 |
|
427 |
# Initialize assistant
|
428 |
+
ASSISTANT = Vision2030Assistant(MODEL, TOKENIZER, VECTOR_STORE)
|
429 |
+
print("Vision 2030 Assistant initialized successfully!")
|
430 |
|
431 |
+
return "System initialized and ready!"
|
432 |
|
433 |
+
def process_query(query, reference=None):
|
434 |
+
"""Process a user query and return the response with evaluation if reference is provided"""
|
435 |
+
if ASSISTANT is None:
|
436 |
+
return "System not initialized. Please initialize first.", "", "", "", ""
|
437 |
+
|
438 |
+
# Process query
|
439 |
+
response, sources, contexts = ASSISTANT.answer(query)
|
440 |
+
|
441 |
+
# Additional details
|
442 |
+
language = detect_language(query)
|
443 |
+
source_text = "\n".join([f"Source: {s}" for s in sources])
|
444 |
+
context_text = "\n\n".join([f"Context {i+1}: {ctx['content'][:200]}..." for i, ctx in enumerate(contexts)])
|
445 |
+
|
446 |
+
# Calculate metrics if reference is provided
|
447 |
+
metrics_text = ""
|
448 |
+
if reference:
|
449 |
+
# ROUGE scores
|
450 |
+
rouge_scores = rouge_scorer_instance.score(response, reference)
|
451 |
+
|
452 |
+
# BLEU scores
|
453 |
+
bleu_scores = calculate_bleu(response, reference)
|
454 |
+
|
455 |
+
# METEOR score
|
456 |
+
meteor = calculate_meteor(response, reference)
|
457 |
+
|
458 |
+
# F1, Precision, Recall
|
459 |
+
word_metrics = calculate_f1_precision_recall(response, reference)
|
460 |
+
|
461 |
+
# Format metrics text
|
462 |
+
metrics_text = f"""
|
463 |
+
## Evaluation Metrics:
|
464 |
+
- **ROUGE-1**: {rouge_scores['rouge1'].fmeasure:.4f}
|
465 |
+
- **ROUGE-L**: {rouge_scores['rougeL'].fmeasure:.4f}
|
466 |
+
- **BLEU-1**: {bleu_scores['bleu_1']:.4f}
|
467 |
+
- **BLEU-4**: {bleu_scores['bleu_4']:.4f}
|
468 |
+
- **METEOR**: {meteor:.4f}
|
469 |
+
- **Word F1**: {word_metrics['f1']:.4f}
|
470 |
+
- **Word Precision**: {word_metrics['precision']:.4f}
|
471 |
+
- **Word Recall**: {word_metrics['recall']:.4f}
|
472 |
+
"""
|
473 |
+
|
474 |
+
return response, source_text, context_text, metrics_text, language
|
475 |
+
|
476 |
+
def evaluate_sample(sample_index):
|
477 |
+
"""Evaluate a sample from the predefined evaluation dataset"""
|
478 |
+
if sample_index < 0 or sample_index >= len(sample_evaluation_data):
|
479 |
+
return "Invalid sample index", "", "", "", ""
|
480 |
|
481 |
+
sample = sample_evaluation_data[sample_index]
|
482 |
+
query = sample["query"]
|
483 |
+
reference = sample["reference"]
|
484 |
|
485 |
+
# Process the query with the reference for evaluation
|
486 |
+
response, source_text, context_text, metrics_text, language = process_query(query, reference)
|
487 |
|
488 |
+
# Add reference to the output
|
489 |
+
reference_text = f"""
|
490 |
+
## Reference Answer:
|
491 |
+
{reference}
|
492 |
+
"""
|
493 |
|
494 |
+
return response, source_text, context_text, metrics_text + reference_text, language
|
|
|
|
|
|
|
|
|
|
|
495 |
|
496 |
def reset_chat():
|
497 |
+
"""Reset the conversation history"""
|
498 |
+
if ASSISTANT:
|
499 |
+
ASSISTANT.reset_conversation()
|
500 |
+
return "Conversation has been reset."
|
501 |
+
return "System not initialized."
|
|
|
|
|
502 |
|
503 |
+
def qualitative_feedback(response, user_feedback, feedback_type):
|
504 |
+
"""Save qualitative feedback from users"""
|
505 |
+
try:
|
506 |
+
feedback_data = {
|
507 |
+
"response": response,
|
508 |
+
"user_feedback": user_feedback,
|
509 |
+
"feedback_type": feedback_type,
|
510 |
+
"timestamp": str(datetime.datetime.now())
|
511 |
+
}
|
512 |
+
|
513 |
+
# Ensure directory exists
|
514 |
+
os.makedirs("feedback", exist_ok=True)
|
515 |
+
|
516 |
+
# Append to feedback file
|
517 |
+
with open("feedback/user_feedback.jsonl", "a") as f:
|
518 |
+
f.write(json.dumps(feedback_data) + "\n")
|
519 |
+
|
520 |
+
return f"Thank you for your {feedback_type} feedback!"
|
521 |
+
except Exception as e:
|
522 |
+
return f"Error saving feedback: {e}"
|
523 |
|
524 |
# Create Gradio interface
|
525 |
+
with gr.Blocks(title="Vision 2030 Assistant - Qualitative Evaluation") as demo:
|
526 |
+
gr.Markdown("# Vision 2030 Virtual Assistant - Qualitative Evaluation")
|
527 |
+
gr.Markdown("This interface allows you to interact with and evaluate the multilingual Vision 2030 Assistant.")
|
528 |
|
529 |
+
with gr.Tab("System Initialization"):
|
530 |
+
init_button = gr.Button("Initialize System")
|
531 |
+
init_output = gr.Textbox(label="Initialization Status")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
532 |
|
533 |
+
init_button.click(initialize_system, inputs=[], outputs=[init_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
534 |
|
535 |
+
with gr.Tab("Chat & Evaluation"):
|
|
|
|
|
536 |
with gr.Row():
|
537 |
+
with gr.Column(scale=2):
|
538 |
+
query_input = gr.Textbox(label="Ask about Saudi Vision 2030 (in English or Arabic)", lines=3)
|
539 |
+
reference_input = gr.Textbox(label="Reference Answer (Optional - for evaluation)", lines=3)
|
540 |
+
|
541 |
+
with gr.Row():
|
542 |
+
submit_btn = gr.Button("Submit")
|
543 |
+
reset_btn = gr.Button("Reset Chat")
|
544 |
+
|
545 |
+
response_output = gr.Textbox(label="Response", lines=6)
|
546 |
+
|
547 |
+
with gr.Accordion("Evaluation Metrics", open=False):
|
548 |
+
metrics_output = gr.Markdown()
|
549 |
+
|
550 |
+
with gr.Accordion("Retrieved Sources", open=False):
|
551 |
+
sources_output = gr.Textbox(label="Sources")
|
552 |
+
|
553 |
+
with gr.Accordion("Retrieved Contexts", open=False):
|
554 |
+
contexts_output = gr.Textbox(label="Contexts", lines=10)
|
555 |
+
|
556 |
+
with gr.Accordion("Qualitative Feedback", open=False):
|
557 |
+
feedback_text = gr.Textbox(label="Your Feedback", lines=3)
|
558 |
+
feedback_type = gr.Radio(
|
559 |
+
["Correctness", "Relevance", "Fluency", "Completeness", "Other"],
|
560 |
+
label="Feedback Type"
|
561 |
+
)
|
562 |
+
feedback_btn = gr.Button("Submit Feedback")
|
563 |
+
feedback_output = gr.Textbox(label="Feedback Status")
|
564 |
+
|
565 |
+
with gr.Tab("Sample Evaluation"):
|
566 |
+
sample_index = gr.Slider(0, len(sample_evaluation_data)-1, 0, step=1, label="Sample Index")
|
567 |
+
eval_btn = gr.Button("Evaluate Sample")
|
568 |
+
|
569 |
+
sample_response = gr.Textbox(label="Response", lines=6)
|
570 |
+
sample_metrics = gr.Markdown(label="Metrics & Reference")
|
571 |
+
|
572 |
+
with gr.Accordion("Retrieved Sources", open=False):
|
573 |
+
sample_sources = gr.Textbox(label="Sources")
|
574 |
+
|
575 |
+
with gr.Accordion("Retrieved Contexts", open=False):
|
576 |
+
sample_contexts = gr.Textbox(label="Contexts", lines=10)
|
577 |
+
|
578 |
+
with gr.Tab("About"):
|
579 |
+
gr.Markdown("""
|
580 |
+
## Vision 2030 Assistant
|
581 |
+
|
582 |
+
This is a multilingual RAG-based Conversational Agent using ALLaM-7B for answering questions about Saudi Vision 2030.
|
583 |
+
|
584 |
+
### Features:
|
585 |
+
- Supports both Arabic and English queries
|
586 |
+
- Uses Retrieval-Augmented Generation (RAG) for accurate answers
|
587 |
+
- Provides transparent sources for information
|
588 |
+
- Comprehensive evaluation metrics
|
589 |
+
|
590 |
+
### How to use:
|
591 |
+
1. Initialize the system (first tab)
|
592 |
+
2. Ask questions about Saudi Vision 2030 in the Chat tab
|
593 |
+
3. Optionally provide reference answers for evaluation
|
594 |
+
4. Explore sample evaluations from our test dataset
|
595 |
+
|
596 |
+
### Evaluation Metrics:
|
597 |
+
- ROUGE: Measures overlap of n-grams between response and reference
|
598 |
+
- BLEU: Measures precision of n-grams in the response compared to reference
|
599 |
+
- METEOR: Measures semantic similarity between response and reference
|
600 |
+
- F1/Precision/Recall: Word-level comparison metrics
|
601 |
+
""")
|
602 |
+
|
603 |
+
# Set up event handlers
|
604 |
+
submit_btn.click(
|
605 |
+
process_query,
|
606 |
+
inputs=[query_input, reference_input],
|
607 |
+
outputs=[response_output, sources_output, contexts_output, metrics_output]
|
608 |
+
)
|
609 |
+
|
610 |
+
reset_btn.click(
|
611 |
+
reset_chat,
|
612 |
+
inputs=[],
|
613 |
+
outputs=[response_output]
|
614 |
+
)
|
615 |
+
|
616 |
+
eval_btn.click(
|
617 |
+
evaluate_sample,
|
618 |
+
inputs=[sample_index],
|
619 |
+
outputs=[sample_response, sample_sources, sample_contexts, sample_metrics]
|
620 |
+
)
|
621 |
+
|
622 |
+
feedback_btn.click(
|
623 |
+
qualitative_feedback,
|
624 |
+
inputs=[response_output, feedback_text, feedback_type],
|
625 |
+
outputs=[feedback_output]
|
626 |
+
)
|
627 |
|
628 |
+
# Launch the interface
|
629 |
+
if __name__ == "__main__":
|
630 |
+
demo.launch()
|