Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Vision 2030 Virtual Assistant with Arabic (ALLaM-7B) and English (Mistral-7B-Instruct) + RAG + Improved Prompting
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
5 |
+
from langdetect import detect
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
import faiss
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
# ----------------------------
|
11 |
+
# Load Arabic Model (ALLaM-7B)
|
12 |
+
# ----------------------------
|
13 |
+
print("Loading ALLaM-7B-Instruct-preview for Arabic...")
|
14 |
+
arabic_model_id = "ALLaM-AI/ALLaM-7B-Instruct-preview"
|
15 |
+
arabic_tokenizer = AutoTokenizer.from_pretrained(arabic_model_id)
|
16 |
+
arabic_model = AutoModelForCausalLM.from_pretrained(arabic_model_id, device_map="auto")
|
17 |
+
arabic_pipe = pipeline("text-generation", model=arabic_model, tokenizer=arabic_tokenizer)
|
18 |
+
|
19 |
+
# ----------------------------
|
20 |
+
# Load English Model (Mistral-7B-Instruct)
|
21 |
+
# ----------------------------
|
22 |
+
print("Loading Mistral-7B-Instruct-v0.2 for English...")
|
23 |
+
english_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
24 |
+
english_tokenizer = AutoTokenizer.from_pretrained(english_model_id)
|
25 |
+
english_model = AutoModelForCausalLM.from_pretrained(english_model_id, device_map="auto")
|
26 |
+
english_pipe = pipeline("text-generation", model=english_model, tokenizer=english_tokenizer)
|
27 |
+
|
28 |
+
# ----------------------------
|
29 |
+
# Load Embedding Models for Retrieval
|
30 |
+
# ----------------------------
|
31 |
+
print("Loading Embedding Models for Retrieval...")
|
32 |
+
arabic_embedder = SentenceTransformer('CAMeL-Lab/bert-base-arabic-camelbert-ca')
|
33 |
+
english_embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
34 |
+
|
35 |
+
# ----------------------------
|
36 |
+
# Prepare FAISS Index (dummy example)
|
37 |
+
# ----------------------------
|
38 |
+
# In real scenario, load Vision 2030 documents, preprocess & embed
|
39 |
+
# Here we'll create dummy data for demonstration
|
40 |
+
|
41 |
+
documents = [
|
42 |
+
{"text": "Vision 2030 aims to diversify the Saudi economy.", "lang": "en"},
|
43 |
+
{"text": "رؤية 2030 تهدف إلى تنويع الاقتصاد السعودي.", "lang": "ar"}
|
44 |
+
]
|
45 |
+
|
46 |
+
# Embed documents and build index
|
47 |
+
english_vectors = []
|
48 |
+
arabic_vectors = []
|
49 |
+
english_texts = []
|
50 |
+
arabic_texts = []
|
51 |
+
|
52 |
+
for doc in documents:
|
53 |
+
if doc["lang"] == "en":
|
54 |
+
vec = english_embedder.encode(doc["text"])
|
55 |
+
english_vectors.append(vec)
|
56 |
+
english_texts.append(doc["text"])
|
57 |
+
else:
|
58 |
+
vec = arabic_embedder.encode(doc["text"])
|
59 |
+
arabic_vectors.append(vec)
|
60 |
+
arabic_texts.append(doc["text"])
|
61 |
+
|
62 |
+
# FAISS indexes
|
63 |
+
english_index = faiss.IndexFlatL2(len(english_vectors[0]))
|
64 |
+
english_index.add(np.array(english_vectors))
|
65 |
+
|
66 |
+
arabic_index = faiss.IndexFlatL2(len(arabic_vectors[0]))
|
67 |
+
arabic_index.add(np.array(arabic_vectors))
|
68 |
+
|
69 |
+
# ----------------------------
|
70 |
+
# Define the RAG response function with Improved Prompting
|
71 |
+
# ----------------------------
|
72 |
+
def retrieve_and_generate(user_input):
|
73 |
+
try:
|
74 |
+
lang = detect(user_input)
|
75 |
+
except:
|
76 |
+
lang = "en" # Default fallback
|
77 |
+
|
78 |
+
if lang == "ar":
|
79 |
+
print("Detected Arabic input")
|
80 |
+
query_vec = arabic_embedder.encode(user_input)
|
81 |
+
D, I = arabic_index.search(np.array([query_vec]), k=1)
|
82 |
+
context = arabic_texts[I[0][0]] if I[0][0] >= 0 else ""
|
83 |
+
# Improved Arabic Prompt
|
84 |
+
input_text = (
|
85 |
+
f"أنت خبير في رؤية السعودية 2030.\n"
|
86 |
+
f"إليك بعض المعلومات المهمة:\n{context}\n\n"
|
87 |
+
f"مثال:\n"
|
88 |
+
f"السؤال: ما هي ركائز رؤية 2030؟\n"
|
89 |
+
f"الإجابة: ركائز رؤية 2030 هي مجتمع حيوي، اقتصاد مزدهر، ووطن طموح.\n\n"
|
90 |
+
f"أجب عن سؤال المستخدم بشكل واضح ودقيق.\n"
|
91 |
+
f"السؤال: {user_input}\n"
|
92 |
+
f"الإجابة:"
|
93 |
+
)
|
94 |
+
response = arabic_pipe(input_text, max_new_tokens=256, do_sample=True, temperature=0.7)
|
95 |
+
reply = response[0]['generated_text']
|
96 |
+
|
97 |
+
else:
|
98 |
+
print("Detected English input")
|
99 |
+
query_vec = english_embedder.encode(user_input)
|
100 |
+
D, I = english_index.search(np.array([query_vec]), k=1)
|
101 |
+
context = english_texts[I[0][0]] if I[0][0] >= 0 else ""
|
102 |
+
# Improved English Prompt
|
103 |
+
input_text = (
|
104 |
+
f"You are an expert on Saudi Arabia's Vision 2030.\n"
|
105 |
+
f"Here is some relevant information:\n{context}\n\n"
|
106 |
+
f"Example:\n"
|
107 |
+
f"Question: What are the key pillars of Vision 2030?\n"
|
108 |
+
f"Answer: The key pillars are a vibrant society, a thriving economy, and an ambitious nation.\n\n"
|
109 |
+
f"Answer the user's question clearly and accurately.\n"
|
110 |
+
f"Question: {user_input}\n"
|
111 |
+
f"Answer:"
|
112 |
+
)
|
113 |
+
response = english_pipe(input_text, max_new_tokens=256, do_sample=True, temperature=0.7)
|
114 |
+
reply = response[0]['generated_text']
|
115 |
+
|
116 |
+
return reply
|
117 |
+
|
118 |
+
# ----------------------------
|
119 |
+
# Gradio UI
|
120 |
+
# ----------------------------
|
121 |
+
with gr.Blocks() as demo:
|
122 |
+
gr.Markdown("# Vision 2030 Virtual Assistant 🌍\n\nSupports Arabic & English queries about Vision 2030 (with RAG retrieval and improved prompting).")
|
123 |
+
chatbot = gr.Chatbot()
|
124 |
+
msg = gr.Textbox(label="Ask me anything about Vision 2030")
|
125 |
+
clear = gr.Button("Clear")
|
126 |
+
|
127 |
+
def chat(message, history):
|
128 |
+
reply = retrieve_and_generate(message)
|
129 |
+
history.append((message, reply))
|
130 |
+
return history, ""
|
131 |
+
|
132 |
+
msg.submit(chat, [msg, chatbot], [chatbot, msg])
|
133 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
134 |
+
|
135 |
+
# Launching the space
|
136 |
+
demo.launch()
|