abdull4h commited on
Commit
4e0fcd1
·
verified ·
1 Parent(s): 163331d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Initialize the sentiment analysis pipeline
5
+ # Model: nlptown/bert-base-multilingual-uncased-sentiment
6
+ sentiment_analyzer = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
7
+
8
+ def analyze_sentiment(text):
9
+ """
10
+ Returns the predicted sentiment as a label ranging from 1 to 5 stars.
11
+ """
12
+ result = sentiment_analyzer(text)[0]
13
+ label = result["label"] # e.g., "1 star", "2 stars", "3 stars", "4 stars", or "5 stars"
14
+ return f"Predicted sentiment: {label}"
15
+
16
+ # Predefined examples
17
+ examples = [
18
+ ["I love this product! It's amazing!"],
19
+ ["This was the worst experience I've ever had."],
20
+ ["The movie was okay, not great but not bad either."],
21
+ ["Absolutely fantastic! I would recommend it to everyone."]
22
+ ]
23
+
24
+ # Create the Gradio interface
25
+ demo = gr.Interface(
26
+ fn=analyze_sentiment,
27
+ inputs=gr.Textbox(lines=3, label="Enter Your Text Here"),
28
+ outputs=gr.Textbox(label="Predicted Sentiment"),
29
+ title="Multilingual Sentiment Analysis",
30
+ description=(
31
+ "This app uses the 'nlptown/bert-base-multilingual-uncased-sentiment' model "
32
+ "to predict sentiment on a scale of 1 to 5 stars."
33
+ ),
34
+ examples=examples,
35
+ )
36
+
37
+ if __name__ == "__main__":
38
+ demo.launch()