File size: 9,130 Bytes
82f9e44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import numpy as np

class InputEmbeddings(nn.Module):
    def __init__(self, d_model: int, vocab_size: int):
        super().__init__()
        self.d_model = d_model
        self.vocab_size = vocab_size
        self.embedding = nn.Embedding(vocab_size, d_model)

    def forward(self, x):
        return self.embedding(x) * math.sqrt(self.d_model)


class PositionalEncoding(nn.Module):
    def __init__(self, d_model: int, seq_len: int, dropout):
        super().__init__()
        self.d_model = d_model
        self.seq_len = seq_len
        self.dropout = nn.Dropout(dropout)

        # create matrix pe of (seq_length , d_model)
        pe = torch.zeros(seq_len, d_model)

        # create a vector of shape (seq_length ,1 )
        # formula = pos / 10000 ** (2i / d_model)
        pos = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1)
        div = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0)/d_model))

        # apply sin for evens
        pe[:, 0::2] = torch.sin(pos * div)
        # apply cos for odds
        pe[:, 1::2] = torch.cos(pos * div)

        # changing pe (seq_len, d_model) -> (1, seq_len, d_model)
        pe = pe.unsqueeze(0)

        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + (self.pe[:, :x.shape[1], :]).requires_grad_(False)
        return self.dropout(x)


class LayerNormalization(nn.Module):
    def __init__(self, eps=10**-6):
        super().__init__()
        self.eps = eps
        self.alpha = nn.Parameter(torch.ones(1))  # multiplier
        self.bias = nn.Parameter(torch.zeros(1))

    def forward(self, x):
        mean = x.mean(dim=-1, keepdim=True)
        std = x.std(dim=-1, keepdim=True)
        return self.alpha * ((x - mean) / (std + self.eps)) + self.bias


class FeedForwardBlock(nn.Module):
    def __init__(self, d_model: int, d_ff: int, dropout):
        super().__init__()
        self.dropout = nn.Dropout(dropout)
        # fully connected NN -> input:d_model(512) inner:d_ff(2048) output:d_model(512)
        self.linear_1 = nn.Linear(d_model, d_ff)  # w1 & b1
        self.linear_2 = nn.Linear(d_ff, d_model)  # w2 & b2

    def forward(self, x):
        # (Batch,Seq_len,d_model) --> (Batch,Seq_len,d_ff) --> (Batch,Seq__len,d_model)
        return self.linear_2(self.dropout(torch.relu(self.linear_1(x))))


class MultiHeadAttentionBlock(nn.Module):
    def __init__(self, d_model: int, h: int, dropout: float):
        super().__init__()
        self.d_model = d_model
        self.h = h
        #  d_model must divisible by number of attention heads
        assert d_model % h == 0, "d_model must divisible by h"
        self.d_k = d_model//h

        self.w_q = nn.Linear(d_model, d_model)
        self.w_k = nn.Linear(d_model, d_model)
        self.w_v = nn.Linear(d_model, d_model)
        self.w_o = nn.Linear(d_model, d_model)
        self.dropout = nn.Dropout(dropout)
        
    @staticmethod
    def attention(query,key,value,dropout:nn.Dropout):
    #     d_k = query.shape[-1]
    #     #(Batch, h, Seq_len, d_k) --> (Batch, h, Seq_len, Seq_len)
    #     attention_scores = (query @ key.transpose(-2,-1)) / math.sqrt(d_k)
    #     if mask is not None:
    #         attention_scores.masked_fill_(mask==0,-1e9)
    #     attention_scores = attention_scores.softmax(dim = -1) # (Batch, h, Seq_len, Seq_len)
    #     if dropout is not None:
    #         attention_scores = dropout(attention_scores)
            
    #     return (attention_scores @ value) , attention_scores
        attn_output = F.scaled_dot_product_attention(
            query, key, value,
            attn_mask=None,
            dropout_p=dropout.p if dropout is not None else 0.0,
            is_causal=True  # If this is for decoder/causal models, set True
        )
        
        return attn_output, None 
         

    def forward(self, q, k, v):
        query  = self.w_q(q) # (Batch, Seq_len, d_model) --> (Batch, Seq_len, d_model) 
        key = self.w_k(k) # (Batch, Seq_len, d_model) --> (Batch, Seq_len, d_model)
        value = self.w_v(v) # (Batch, Seq_len, d_model) --> (Batch, Seq_len, d_model)
        
        # (Batch, Seq_len, d_model) --> (Batch, Seq_len, d_model, h, d_k) --> (Batch, h, Seq_len, d_k)
        query = query.view(query.shape[0], query.shape[1], self.h , self.d_k).transpose(1,2)
        key = key.view(key.shape[0], key.shape[1], self.h , self.d_k).transpose(1,2)
        value = value.view(value.shape[0], value.shape[1], self.h , self.d_k).transpose(1,2)
        
        x,attention_scores = MultiHeadAttentionBlock.attention(query,key,value,self.dropout)
        # print("Attention scores : ",attention_scores)
        # print_attention(attention_scores)
        # print("Attention shape : ",attention_scores.shape)
        
        
        
        # (Batch, h, Seq_len, d_k) --> (Batch, Seq_len, h, Seq_len) --> (Batch, Seq_len, d_model)
        x = x.transpose(1,2).contiguous().view(x.shape[0], -1, self.h*self.d_k)
        
        # (Batch, Seq_len, d_model) --> (Batch, Seq_len, d_model) 
        return self.w_o(x)
    
class ResidualConnection(nn.Module):
    def __init__(self, dropout:float):
        super().__init__()
        self.dropout = nn.Dropout(dropout)
        self.norm = LayerNormalization()
        
    def forward(self, x, sublayer):
        return x + self.dropout(sublayer(self.norm(x)))
        
class DecoderBlock(nn.Module):
    def __init__(self, self_attention_block:MultiHeadAttentionBlock,feed_forward_block:FeedForwardBlock, dropout:float ):
        super().__init__()
        self.self_attention_block = self_attention_block
        self.feed_forward_block = feed_forward_block
        self.residual_connections = nn.ModuleList((ResidualConnection(dropout) for _ in range(2)))
        
    def forward(self, x):
        x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x))
        x = self.residual_connections[1](x, self.feed_forward_block)
        return x
    
class Decoder(nn.Module):
    def __init__(self, layers:nn.ModuleList):
        super().__init__()
        self.layers = layers
        self.norm = LayerNormalization()
    
    def forward(self, x):
        for layer in self.layers:
            x = layer(x)
        return self.norm(x)
    
class ProjectionLayer(nn.Module):
    def __init__(self, d_model:int, vocab_size :int ):
        super().__init__()
        self.proj = nn.Linear(d_model,vocab_size)
    
    def forward(self, x):
        #(Batch, Seq_len, d_model) --> (Batch, Seq_len, vocab_size)
        return torch.log_softmax(self.proj(x),dim=-1)
    
class GPT(nn.Module):
    def __init__(self,decoder:Decoder,  tgt_embed:InputEmbeddings,  tgt_pos:PositionalEncoding, projection_layer:ProjectionLayer):
        super().__init__()
        self.decoder = decoder
        self.tgt_embed = tgt_embed
        self.tgt_pos = tgt_pos
        self.projection_layer = projection_layer
    
    def decode(self, tgt):
        tgt = self.tgt_embed(tgt)
        tgt = self.tgt_pos(tgt)
        return self.decoder(tgt)
    
    def project(self, x):
        return self.projection_layer(x)
    
def build_gpt(vocab_size:int, seq_len:int, d_model:int = 512, N:int = 6, h:int = 8,d_ff:int = 2048, dropout:float = 0.3) -> GPT:
    
    #create embedding layer
    tgt_embed = InputEmbeddings(d_model,vocab_size)

    #create positional encoding layer
    tgt_pos = PositionalEncoding(d_model, seq_len, dropout)

    decoder_blocks = []
    for _ in range(N):
        decoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
        decoder_feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
        decoder_block = DecoderBlock(decoder_self_attention_block, decoder_feed_forward_block, dropout)               
        decoder_blocks.append(decoder_block)
        
    decoder = Decoder(nn.ModuleList(decoder_blocks))
    
    #create the projection layer
    projection_layer = ProjectionLayer(d_model,vocab_size)
    
    #create the transformer
    gpt = GPT(decoder,tgt_embed,tgt_pos,projection_layer)
    
    for p in gpt.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform_(p)
            
    return gpt
def colorize(value):
    """Return colored string based on value between 0 and 1."""
    # Map to 0-255 for brightness
    brightness = int(232 + value * 23)  # 232 to 255 grayscale in ANSI
    return f"\033[48;5;{brightness}m {value:.2f} \033[0m"

def print_attention(attention_scores):
    batch_size, num_heads, seq_len, _ = attention_scores.shape

    for head in range(num_heads):
        print(f"\nAttention Head {head + 1}:\n" + "-" * 30)
        
        attn = attention_scores[0, head]  # Take batch 0
        attn = (attn - attn.min()) / (attn.max() - attn.min() + 1e-8)  # Normalize

        for i in range(seq_len):
            for j in range(seq_len):
                print(colorize(attn[i, j].item()), end=" ")
            print()  # Newline after each row
    
if __name__ == "__main__":
    gpt = build_gpt(10000, 350)
    print(gpt)