File size: 15,101 Bytes
82f9e44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader , random_split
from datasets import load_dataset , concatenate_datasets
from tokenizers import Tokenizer
from tokenizers.models import BPE,WordLevel
from tokenizers.trainers import BpeTrainer,WordLevelTrainer
from tokenizers.pre_tokenizers import ByteLevel,Whitespace
from tokenizers.processors import TemplateProcessing
from tokenizers import decoders
from torch.cuda.amp import autocast, GradScaler
import time
from torch.utils.tensorboard import SummaryWriter
from itertools import islice
from config import get_weights_file_path, get_config
from tqdm import tqdm
from pathlib import Path
import warnings
from fine_tune_dataset import BilingualDataset
from model import build_gpt
g = torch.Generator()
g.manual_seed(23)
def greedy_decode(model, text,mask, tokenizer, max_len, device):
sos_idx = tokenizer.token_to_id('<s>')
eos_idx = tokenizer.token_to_id('</s>')
decoder_input = torch.empty(1,1).fill_(sos_idx).type_as(text).to(device)
while True:
if decoder_input.size(1) == max_len:
break
decoder_mask = causal_mask(decoder_input.size(1)).type_as(mask).to(device)
out = model.decode(decoder_input, decoder_mask)
prob = model.project(out[:,-1])
_, next_word = torch.max(prob, dim=1)
decoder_input = torch.cat([decoder_input, torch.empty(1,1).type_as(text).fill_(next_word.item()).to(device)],dim=1)
if next_word == eos_idx:
break
return decoder_input.squeeze(0)
def generate_text(
model, text, mask, tokenizer, max_len, device,
temperature=0.7, top_k=50
):
eos_idx = tokenizer.token_to_id('</s>')
# Start with the input text as initial decoder input
decoder_input = text.to(device)
if decoder_input.dim() == 1:
decoder_input = decoder_input.unsqueeze(0)
# Print the initial prompt
prompt_text = tokenizer.decode(text.squeeze(0).tolist())
print(prompt_text, end="", flush=True)
while len(decoder_input[0]) < max_len - 3:
# Apply causal mask based on current decoder_input length
decoder_mask = causal_mask(decoder_input.size(1)).type_as(mask).to(device)
# Get model output
out = model.decode(decoder_input, decoder_mask)
logits = model.project(out[:, -1]) # Get logits for last token
# Sampling: temperature + top-k
logits = logits / temperature
top_k_logits, top_k_indices = torch.topk(logits, top_k)
probs = torch.softmax(top_k_logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
next_token = top_k_indices.gather(-1, next_token)
# Decode and print token
word = tokenizer.decode([next_token.item()])
print(word, end="", flush=True)
# Append next token
decoder_input = torch.cat([decoder_input, next_token], dim=1)
if next_token.item() == eos_idx:
break
print()
return decoder_input.squeeze(0)
def generate_text_(model, text,m, tokenizer, max_len, device, temperature=0.7, top_k=50):
sos_idx = tokenizer.token_to_id('<s>')
eos_idx = tokenizer.token_to_id('</s>')
pad_idx = tokenizer.token_to_id('<pad>')
# Encode input and add <s> at beginning
input_tokens = [sos_idx] + tokenizer.encode(text).ids
# Truncate if too long
input_tokens = input_tokens[:max_len-1] # Leave room for </s>
# Convert to tensor
decoder_input = torch.tensor(input_tokens, device=device).unsqueeze(0)
# Generate until max_len
for _ in range(max_len - len(input_tokens)):
# Create causal mask for what we've generated so far
decoder_mask = causal_mask(decoder_input.size(1)).to(device)
# Get model output
out = model.decode(decoder_input, decoder_mask)
logits = model.project(out[:, -1])
# Apply sampling
logits = logits / temperature
top_k_logits, top_k_indices = torch.topk(logits, top_k)
probs = torch.softmax(top_k_logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
next_token = top_k_indices.gather(-1, next_token)
# Print the generated word
word = tokenizer.decode([next_token.item()])
print(word, end="", flush=True)
# Append to input
decoder_input = torch.cat([decoder_input, next_token.unsqueeze(0)], dim=1)
if next_token.item() == eos_idx:
break
return decoder_input.squeeze(0)
def run_validation(model,validation_ds, tokenizer, max_len, device, print_msg, global_state, writer, num_examples=2):
model.eval()
count = 0
pad_token = torch.tensor([tokenizer.token_to_id('<pad>')],dtype=torch.int64)
sos_token = torch.tensor([tokenizer.token_to_id('<s>')],dtype=torch.int64)
with torch.no_grad():
for batch in validation_ds:
count += 1
input_tokens = batch['input']
# print("TEXT INPUT : ",text)
# input_tokens = tokenizer.encode(text).ids[:-1]
print("TOKENIZED INPUT : ",input_tokens)
input_tokens = input_tokens
# if len(input_tokens) < config['seq_len'] :
# input_tokens+=[pad_token] * ((config['seq_len'] ) - len(input_tokens))
# if len(input_tokens) > config['seq_len'] :
# input_tokens = input_tokens[:config['seq_len']]
input_tokens = torch.tensor(input_tokens)
# (input_tokens != pad_token).unsqueeze(0).int() &
mask = causal_mask(input_tokens.size(0))
# text = batch['input'].to(device)
# mask = batch['input_mask'].to(device)
model_output = generate_text(model, input_tokens, mask, tokenizer, max_len, device)
# model_output = greed0y_decode(model, text, mask,tokenizer, max_len, device)
print_msg("Model Output Embedding : ")
print_msg(str(model_output.tolist()))
model_out_text = tokenizer.decode(model_output.detach().cpu().numpy())
# text = tokenizer.decode(input_tokens[0].tolist(),skip_special_tokens=True)
#print
print_msg(f'SOURCE : {input_tokens}')
print_msg(f'PREDICTED : {model_out_text}')
if count == num_examples:
break
def get_all_sentences(ds):
for item in ds:
yield item['text']
def get_or_build_tokenizer_(config,ds):
tokenizer_path = Path(config['tokenizer_file'])
if not Path.exists(tokenizer_path):
tokenizer = Tokenizer(WordLevel(unk_token="<unk>"))
tokenizer.pre_tokenizer = Whitespace()
trainer = WordLevelTrainer(special_tokens=["<s>", "</s>", "<pad>", "<unk>", "<mask>","<user>","<ai>","<search_start>","<search_end>","<think>","</think>"],min_frequency=2)
tokenizer.train_from_iterator(get_all_sentences(ds),trainer=trainer)
tokenizer.save(str(tokenizer_path))
else:
tokenizer = Tokenizer.from_file(str(tokenizer_path))
return tokenizer
def get_or_build_tokenizer(config, ds):
tokenizer_path = Path(config['tokenizer_file'])
if not tokenizer_path.exists():
# Define tokenizer with BPE model
tokenizer = Tokenizer(BPE(unk_token="<unk>"))
# ByteLevel pre-tokenizer and decoder
tokenizer.pre_tokenizer = ByteLevel(add_prefix_space=True)
tokenizer.decoder = decoders.ByteLevel()
# Optional: Add post-processing for special tokens
tokenizer.post_processor = TemplateProcessing(
single="<s> $A </s>",
pair="<s> $A </s> <s> $B </s>",
special_tokens=[
("<s>", 0),
("</s>", 1),
],
)
# Trainer
trainer = BpeTrainer(
vocab_size = 30000,
min_frequency=2,
special_tokens=["<s>", "</s>", "<pad>", "<unk>", "<mask>","<user>","<ai>","<search_start>","<search_end>","<think>","</think>"]
)
# Train from dataset
tokenizer.train_from_iterator(get_all_sentences(ds), trainer=trainer)
# Save as single .json file
tokenizer.save(str(tokenizer_path))
else:
tokenizer = Tokenizer.from_file(str(tokenizer_path))
return tokenizer
def get_ds(config):
# ds_raw = load_dataset("json",data_files={'train':config['train'],'test':config['test']})
ds_raw = load_dataset("tatsu-lab/alpaca",split="train[:50000]")
ds_test = load_dataset("tatsu-lab/alpaca",split="train[-2002:]")
# ds_raw = ds_raw[:1]
# ds_raw = load_dataset("stas/openwebtext-10k")
tokenizer = get_or_build_tokenizer(config,ds_raw)
# tokenizer = get_or_build_tokenizer(config,ds_raw)
train_ds = BilingualDataset(ds_raw, tokenizer, config['seq_len'])
val_ds = BilingualDataset(ds_test, tokenizer, config['seq_len'])
train_dataloader = DataLoader(train_ds, num_workers=6,prefetch_factor=2,pin_memory=True,batch_size=config['batch_size'])
val_dataloader = DataLoader(val_ds, batch_size=1)
return train_dataloader, val_dataloader, tokenizer
def get_model(config, vocab_size):
# model = build_transformer(vocab_src_len,vocab_tgt_len,config['seq_len'],config['seq_len'],config['d_model'], config['N'] , config['h'], config['d_ff'])
model = build_gpt( vocab_size, config['seq_len'], config['d_model'], config['N'] , config['h'], config['d_ff'],config['dropout'])
return model
def validate_model(val_dataloader, model,device,loss_fn,vocab_size):
total_loss = 0
model.eval()
i = 0
with torch.no_grad():
for batch in val_dataloader:
input_tokens = batch['input'].to(device,non_blocking=True)
label = batch['label'].to(device,non_blocking=True)
decoder_output = model.decode(input_tokens)
project_output = model.project(decoder_output)
total_loss += loss_fn(
project_output.view(-1,vocab_size),
label.view(-1)
)
i+=1
print(f"Validation loss : {total_loss/i:4f}")
def train_model(config):
#Define the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device : {device}")
# Enable TF32 (optional, speeds up matmul)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
Path(config['model_folder']).mkdir(parents=True, exist_ok=True)
train_dataloader , val_dataloader, tokenizer = get_ds(config)
print(tokenizer.get_vocab_size())
model = get_model(config, tokenizer.get_vocab_size()).to(device)
# TensorBoard
writer = SummaryWriter(config['experiment_name'])
optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], eps=1e-9)
scaler = GradScaler() # <- added scaler for mixed precision
initial_epoch = 0
global_step = 0
tqdm_state = {'n':0}
model_filename = None
if config['preload']:
model_filename = get_weights_file_path(config, config['preload'])
print(f"Preloading Model {model_filename}")
state = torch.load(model_filename)
model.load_state_dict(state['model_state_dict'])
optimizer.load_state_dict(state['optimizer_state_dict'])
initial_epoch = state['epoch'] if 'mid-' in model_filename else state['epoch'] + 1
global_step = state['global_step']
tqdm_state = state['tqdm_state'] if 'mid-' in model_filename else {'n':0}
else:
print("No Model to preload. Setting from scratch.")
loss_fn = nn.CrossEntropyLoss(
ignore_index=tokenizer.token_to_id('<pad>'),
label_smoothing=0.05
).to(device)
e = 0
try:
for epoch in range(initial_epoch, config['num_epochs']):
model.train()
batch_iterator = tqdm(islice(train_dataloader,tqdm_state['n'],None), desc=f'Processing epoch {epoch:02d}',initial=tqdm_state['n'] ,total=len(train_dataloader))#total=217013)
e = epoch
if 'elapsed' in tqdm_state and "mid-" in model_filename :
batch_iterator.start_t = time.time() - tqdm_state['elapsed']
# total_len = len(batch_iterator)
for batch in batch_iterator:
# print(len(batch_iterator))
# torch.cuda.empty_cache()
input_tokens = batch['input'].to(device,non_blocking=True)
label = batch['label'].to(device,non_blocking=True)
optimizer.zero_grad(set_to_none=True)
# 🔥 Mixed precision forward pass
with autocast(dtype=torch.float16):
decoder_output = model.decode(input_tokens)
project_output = model.project(decoder_output) # (B, Seq_len, tgt_vocab_size)
loss = loss_fn(
project_output.view(-1, tokenizer.get_vocab_size()),
label.view(-1)
)
if global_step%10 ==0:
batch_iterator.set_postfix({f"loss": f"{loss.item():6.3f}"})
writer.add_scalar("train loss", loss.item(), global_step)
writer.flush()
if global_step % 10000 == 0 and global_step != 0:
validate_model(val_dataloader,model,device,loss_fn,tokenizer.get_vocab_size())
# 🔥 Mixed precision backward pass
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
global_step += 1
tqdm_state = {'n': batch_iterator.n,'elapsed':batch_iterator.format_dict["elapsed"]}
# if()
tqdm_state['n'] = 0
del tqdm_state['elapsed']
model_filename = get_weights_file_path(config, f'{epoch:02d}')
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'global_step': global_step,
'tqdm_state':tqdm_state
}, model_filename)
validate_model(train_dataloader,model,device,loss_fn,tokenizer.get_vocab_size())
except KeyboardInterrupt:
print("You are stoping training : ... ")
model_filename = get_weights_file_path(config, f'mid-{e:02d}{input("Checkpoint Name: ")}')
torch.save({
'epoch': e,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'global_step': global_step,
'tqdm_state':tqdm_state
}, model_filename)
if __name__ == "__main__":
warnings.filterwarnings('ignore')
config = get_config("./openweb.config.json")
train_model(config)
|