Spaces:
Runtime error
Runtime error
File size: 1,305 Bytes
88e2a01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import streamlit as st
from tensorflow.keras.models import load_model
from PIL import Image
import numpy as np
model = load_model("model_malaria_detection.h5")
def process_image(img):
img = img.convert("RGB")
img = img.resize((50,50))
img = np.array(img)
if img.ndim == 2:
img = np.stack((img,)*3, axis=-1)
img = img/255.0
img = np.expand_dims(img, axis=0)
return img
st.title("MALARIA RECOGNITION")
st.divider()
col1, col2, col3 = st.columns([1,2,1])
with col2:
st.image("malaria.jpeg")
st.divider()
st.success("Upload your malaria image from blood cell and classify the images with the following labels: Uninfected and Parasitized with CNN deep learning.")
st.divider()
st.write("Upload your image and see the results")
st.divider()
file = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png", "webp"])
if file is not None:
img = Image.open(file)
st.image(img, caption="Uploaded image")
image = process_image(img)
prediction = model.predict(image)
predicted_class = np.round(prediction)
predicted_class = int(predicted_class.flatten())
class_names = {0:"Parasitized", 1:"Uninfected"}
st.write(f"Predicted Malaria Type: {class_names[predicted_class]}") |