Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
+
from threading import Thread
|
5 |
+
|
6 |
+
# --- Configuration ---
|
7 |
+
MODEL_ID = "microsoft/bitnet-b1.58-2B-4T"
|
8 |
+
# Try 'cuda' if you have a GPU space, 'cpu' otherwise (will be slow)
|
9 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
print(f"Using device: {DEVICE}")
|
11 |
+
|
12 |
+
# --- Load Model and Tokenizer ---
|
13 |
+
# Note: Loading might require specific trust_remote_code=True or other flags
|
14 |
+
# depending on the model implementation. Check the model card on Hugging Face.
|
15 |
+
# You might also need specific quantization configs if not handled automatically.
|
16 |
+
try:
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
18 |
+
# Adjust loading parameters as needed (e.g., torch_dtype, device_map)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
MODEL_ID,
|
21 |
+
torch_dtype=torch.bfloat16, # Or float16, adjust based on hardware/model reqs
|
22 |
+
device_map="auto", # Automatically distribute across available devices (GPU/CPU)
|
23 |
+
# trust_remote_code=True # May be required for some custom model code
|
24 |
+
)
|
25 |
+
# model.to(DEVICE) # Usually handled by device_map="auto"
|
26 |
+
print("Model and tokenizer loaded successfully.")
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Error loading model or tokenizer: {e}")
|
29 |
+
# Fallback or exit if loading fails
|
30 |
+
raise SystemExit("Failed to load model/tokenizer.")
|
31 |
+
|
32 |
+
# --- Chat Processing Function ---
|
33 |
+
def predict(message, history):
|
34 |
+
"""
|
35 |
+
Generates a response to the user's message using the chat history.
|
36 |
+
"""
|
37 |
+
history_transformer_format = []
|
38 |
+
for human, assistant in history:
|
39 |
+
# Basic alternating format - adjust if the model expects something different
|
40 |
+
history_transformer_format.append({"role": "user", "content": human})
|
41 |
+
history_transformer_format.append({"role": "assistant", "content": assistant})
|
42 |
+
|
43 |
+
# Add the current user message
|
44 |
+
history_transformer_format.append({"role": "user", "content": message})
|
45 |
+
|
46 |
+
# Use the tokenizer's chat template if available, otherwise manual formatting.
|
47 |
+
# Base models might not have a specific chat template.
|
48 |
+
try:
|
49 |
+
prompt = tokenizer.apply_chat_template(
|
50 |
+
history_transformer_format,
|
51 |
+
tokenize=False,
|
52 |
+
add_generation_prompt=True # Important for generation
|
53 |
+
)
|
54 |
+
except Exception:
|
55 |
+
# Manual fallback prompt formatting (Example - adjust as needed!)
|
56 |
+
print("Warning: Using basic manual prompt formatting.")
|
57 |
+
prompt_parts = ["Chat History:"]
|
58 |
+
for turn in history_transformer_format:
|
59 |
+
prompt_parts.append(f"{turn['role'].capitalize()}: {turn['content']}")
|
60 |
+
prompt = "\n".join(prompt_parts) + "\nAssistant:" # Ensure it ends ready for generation
|
61 |
+
|
62 |
+
print(f"\n--- Prompt Sent to Model ---\n{prompt}\n---------------------------\n")
|
63 |
+
|
64 |
+
# Use a streamer for interactive generation
|
65 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
66 |
+
|
67 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
68 |
+
|
69 |
+
generation_kwargs = dict(
|
70 |
+
inputs,
|
71 |
+
streamer=streamer,
|
72 |
+
max_new_tokens=512,
|
73 |
+
do_sample=True,
|
74 |
+
top_p=0.9,
|
75 |
+
temperature=0.7,
|
76 |
+
# Add other generation parameters as needed
|
77 |
+
# eos_token_id=tokenizer.eos_token_id # Important if model needs it
|
78 |
+
pad_token_id=tokenizer.eos_token_id # Often set for open-end generation
|
79 |
+
)
|
80 |
+
|
81 |
+
# Run generation in a separate thread for streaming
|
82 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
83 |
+
thread.start()
|
84 |
+
|
85 |
+
# Yield tokens as they become available
|
86 |
+
partial_message = ""
|
87 |
+
for new_token in streamer:
|
88 |
+
partial_message += new_token
|
89 |
+
yield partial_message
|
90 |
+
|
91 |
+
# --- Gradio Interface ---
|
92 |
+
# Use gr.ChatInterface - it handles history management automatically
|
93 |
+
chatbot_interface = gr.ChatInterface(
|
94 |
+
fn=predict,
|
95 |
+
chatbot=gr.Chatbot(height=500),
|
96 |
+
textbox=gr.Textbox(placeholder="Ask me anything...", container=False, scale=7),
|
97 |
+
title="Chat with microsoft/bitnet-b1.58-2B-4T",
|
98 |
+
description="A basic chat interface for the BitNet 1.58-bit 2B parameter model. Remember it's a base model, so prompting matters!",
|
99 |
+
theme="soft",
|
100 |
+
examples=[["Hello!"], ["Explain the concept of 1.58-bit quantization."]],
|
101 |
+
cache_examples=False, # Set to True to cache example results
|
102 |
+
retry_btn=None,
|
103 |
+
undo_btn="Delete Previous Turn",
|
104 |
+
clear_btn="Clear Chat",
|
105 |
+
)
|
106 |
+
|
107 |
+
# --- Launch the Interface ---
|
108 |
+
if __name__ == "__main__":
|
109 |
+
chatbot_interface.launch() # Use share=True for public link if running locally
|