import streamlit as st import folium import geemap.foliumap as geemap import ee import os import pandas as pd from folium import IFrame import json from folium.plugins import Draw import datetime import plotly.express as px import numpy as np from google.auth.transport.requests import Request import google.auth.exceptions import geopy from geopy.geocoders import Nominatim # Initialize Google Earth Engine def initialize_gee(): service = os.getenv('SA') file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'gee', 'ee-muzzamil1-37ebc3dece52.json') credentials = ee.ServiceAccountCredentials(service, file) try: ee.Initialize(credentials) st.success("Google Earth Engine initialized successfully.") except google.auth.exceptions.RefreshError: try: request = Request() credentials.refresh(request) ee.Initialize(credentials) st.success("Google Earth Engine token refreshed and initialized successfully.") except Exception as e: st.error(f"Error refreshing Google Earth Engine token: {e}") except Exception as e: st.error(f"Error initializing Google Earth Engine: {e}") # Load dataset information from CSV def data_gee(): file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'gee','data_gee', 'gee_catalog.csv') data = pd.read_csv(file) data = data[~data['title'].str.contains('deprecated', na=False)].reset_index(drop=True) return data[['id', 'title']], data # Display selected dataset def type_map(Map, cod): if cod == 'AAFC/ACI': dataset = ee.ImageCollection('AAFC/ACI') crop2016 = dataset.filter(ee.Filter.date('2016-01-01', '2016-12-31')).first() Map.set_center(-103.8881, 53.0371, 10) elif cod == 'ACA/reef_habitat/v2_0': dataset = ee.Image('ACA/reef_habitat/v2_0') reefExtent = dataset.select('reef_mask').selfMask() geomorphicZonation = dataset.select('geomorphic').selfMask() benthicHabitat = dataset.select('benthic').selfMask() Map.set_center(-149.56194, -17.00872, 13) Map.set_options('SATELLITE') Map.add_ee_layer(reefExtent, {}, 'Global reef extent') Map.add_ee_layer(geomorphicZonation, {}, 'Geomorphic zonation') Map.add_ee_layer(benthicHabitat, {}, 'Benthic habitat') return "ACA/reef_habitat/v2_0 dataset loaded", None elif cod == 'AHN/AHN2_05M_INT': dataset = ee.Image('AHN/AHN2_05M_INT') elevation = dataset.select('elevation') elevationVis = {'min': -5.0,'max': 30.0} Map.setCenter(5.76583, 51.855276, 16) Map.addLayer(elevation, elevationVis, 'Elevation') elif cod == 'AHN/AHN2_05M_NON': dataset = ee.Image('AHN/AHN2_05M_NON') elevation = dataset.select('elevation') elevationVis = {'min': -5.0, 'max': 30.0} Map.setCenter(5.80258, 51.78547, 14) Map.addLayer(elevation, elevationVis, 'Elevation') elif cod == 'AHN/AHN2_05M_RUW': dataset = ee.Image('AHN/AHN2_05M_RUW') elevation = dataset.select('elevation') elevationVis = {'min': -5.0, 'max': 30.0} Map.setCenter(5.76583, 51.855276, 16) Map.addLayer(elevation, elevationVis, 'Elevation') elif cod == 'ASTER/AST_L1T_003': dataset = ee.ImageCollection('ASTER/AST_L1T_003').filter(ee.Filter.date('2018-01-01', '2018-08-15')) falseColor = dataset.select(['B3N', 'B02', 'B01']) falseColorVis = {'min': 0.0, 'max': 255.0} Map.setCenter(-122.0272, 39.6734, 11) Map.addLayer(falseColor.median(), falseColorVis, 'False Color') elif cod == 'AU/GA/AUSTRALIA_5M_DEM': dataset = ee.ImageCollection('AU/GA/AUSTRALIA_5M_DEM') elevation = dataset.select('elevation') elevationVis = {'min': 0.0, 'max': 150.0, 'palette': ['0000ff', '00ffff', 'ffff00', 'ff0000', 'ffffff']} Map.setCenter(140.1883, -35.9113, 8) Map.addLayer(elevation, elevationVis, 'Elevation') elif cod == 'NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG': dataset = ee.ImageCollection('NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG').filterDate('2022-01-01', '2023-12-31') nighttime = dataset.select('avg_rad') nighttimeVis = {"min": 0.0, "max": 60.0} Map.setCenter(67.1056, 24.8904, 8) Map.addLayer(nighttime, nighttimeVis, 'Nighttime') elif cod == 'ACA/reef_habitat/v2_0': dataset = ee.Image('ACA/reef_habitat/v2_0') reefExtent = dataset.select('reef_mask').selfMask() geomorphicZonation = dataset.select('geomorphic').selfMask() benthicHabitat = dataset.select('benthic').selfMask() Map.setCenter(-149.56194, -17.00872, 13); Map.setOptions('SATELLITE') Map.addLayer(reefExtent, {}, 'Global reef extent') Map.addLayer(geomorphicZonation, {}, 'Geomorphic zonation') Map.addLayer(benthicHabitat, {}, 'Benthic habitat') elif cod == 'AHN/AHN2_05M_INT': dataset = ee.Image('AHN/AHN2_05M_INT') elevation = dataset.select('elevation') elevationVis = {'min': -5.0,'max': 30.0} Map.setCenter(5.76583, 51.855276, 16) Map.addLayer(elevation, elevationVis, 'Elevation') elif cod == 'AHN/AHN2_05M_NON': dataset = ee.Image('AHN/AHN2_05M_NON') elevation = dataset.select('elevation') elevationVis = { 'min': -5.0, 'max': 30.0 } Map.setCenter(5.80258, 51.78547, 14) Map.addLayer(elevation, elevationVis, 'Elevation') elif cod == 'AHN/AHN2_05M_RUW': dataset = ee.Image('AHN/AHN2_05M_RUW') elevation = dataset.select('elevation') elevationVis = { 'min': -5.0, 'max': 30.0 } Map.setCenter(5.76583, 51.855276, 16) Map.addLayer(elevation, elevationVis, 'Elevation') elif cod == 'ASTER/AST_L1T_003': dataset = ee.ImageCollection('ASTER/AST_L1T_003').filter(ee.Filter.date('2018-01-01', '2018-08-15')) falseColor = dataset.select(['B3N', 'B02', 'B01']) falseColorVis = { 'min': 0.0, 'max': 255.0, } Map.setCenter(-122.0272, 39.6734, 11) Map.addLayer(falseColor.median(), falseColorVis, 'False Color') elif cod == 'AU/GA/AUSTRALIA_5M_DEM': dataset = ee.ImageCollection('AU/GA/AUSTRALIA_5M_DEM') elevation = dataset.select('elevation') elevationVis = { 'min': 0.0, 'max': 150.0, 'palette': ['0000ff', '00ffff', 'ffff00', 'ff0000', 'ffffff'] } Map.setCenter(140.1883, -35.9113, 8) Map.addLayer(elevation, elevationVis, 'Elevation') elif cod == 'AU/GA/DEM_1SEC/v10/DEM-H': dataset = ee.Image('AU/GA/DEM_1SEC/v10/DEM-H') elevation = dataset.select('elevation') elevationVis = { 'min': -10.0, 'max': 1300.0, 'palette': [ '3ae237', 'b5e22e', 'd6e21f', 'fff705', 'ffd611', 'ffb613', 'ff8b13', 'ff6e08', 'ff500d', 'ff0000', 'de0101', 'c21301', '0602ff', '235cb1', '307ef3', '269db1', '30c8e2', '32d3ef', '3be285', '3ff38f', '86e26f' ], } Map.setCenter(133.95, -24.69, 5) Map.addLayer(elevation, elevationVis, 'Elevation') elif cod == 'AU/GA/DEM_1SEC/v10/DEM-S': dataset = ee.Image('AU/GA/DEM_1SEC/v10/DEM-S') elevation = dataset.select('elevation') elevationVis = { 'min': -10.0, 'max': 1300.0, 'palette': [ '3ae237', 'b5e22e', 'd6e21f', 'fff705', 'ffd611', 'ffb613', 'ff8b13', 'ff6e08', 'ff500d', 'ff0000', 'de0101', 'c21301', '0602ff', '235cb1', '307ef3', '269db1', '30c8e2', '32d3ef', '3be285', '3ff38f', '86e26f' ], } Map.setCenter(133.95, -24.69, 5) Map.addLayer(elevation, elevationVis, 'Elevation') elif cod == 'BIOPAMA/GlobalOilPalm/v1': dataset = ee.ImageCollection('BIOPAMA/GlobalOilPalm/v1') opClass = dataset.select('classification') mosaic = opClass.mosaic() classificationVis = { 'min': 1, 'max': 3, 'palette': ['ff0000','ef00ff', '696969'] } mask = mosaic.neq(3) mask = mask.where(mask.eq(0), 0.6) Map.addLayer(mosaic.updateMask(mask), classificationVis, 'Oil palm plantation type', True) Map.setCenter(-73.628998,7.320244,8) elif cod == "BLM/AIM/v1/TerrADat/TerrestrialAIM": greens = ee.List(["#00441B", "#00682A", "#37A055", "#5DB96B", "#AEDEA7", "#E7F6E2", "#F7FCF5"]) reds = ee.List(["#67000D", "#9E0D14", "#E32F27", "#F6553D", "#FCA082", "#FEE2D5", "#FFF5F0"]) def normalize(value, min, max): return value.subtract(min).divide(ee.Number(max).subtract(min)) def setColor(feature, property, min, max, palette): value = normalize(feature.getNumber(property), min, max).multiply(palette.size()).min(palette.size().subtract(1)).max(0) return feature.set({"style": {"color": palette.get(value.int())}}) fc = ee.FeatureCollection("BLM/AIM/v1/TerrADat/TerrestrialAIM") woodyHeightStyle = lambda f:setColor(f, "WoodyHgt_Avg", 0, 100, greens) bareSoilStyle = lambda f: setColor(f, "BareSoilCover_FH", 0, 100, reds) treeHeight = fc.filter("WoodyHgt_Avg > 1").map(woodyHeightStyle) bareSoil = fc.filter("BareSoilCover_FH > 1").map(bareSoilStyle) Map.addLayer(bareSoil.style({"styleProperty": "style", "pointSize": 3})) Map.addLayer(treeHeight.style({"styleProperty": "style", "pointSize": 1})) Map.setCenter(-110, 40, 6) elif cod == "BNU/FGS/CCNL/v1": dataset = ee.ImageCollection("BNU/FGS/CCNL/v1").filter(ee.Filter.date("2010-01-01", "2010-12-31")) nighttimeLights = dataset.select("b1") nighttimeLightsVis = { "min": 3.0, "max": 60.0, } Map.setCenter(31.4, 30, 6) Map.addLayer(nighttimeLights, nighttimeLightsVis, "Nighttime Lights") elif cod == "CAS/IGSNRR/PML/V2_v017": dataset = ee.ImageCollection("CAS/IGSNRR/PML/V2_v017") visualization = { 'bands': ["GPP"], "min": 0.0, "max": 9.0, "palette": ["a50026", "d73027", "f46d43", "fdae61", "fee08b", "ffffbf", "d9ef8b", "a6d96a", "66bd63", "1a9850", "006837"]} Map.setCenter(0.0, 15.0, 2) Map.addLayer(dataset, visualization, "PML_V2 0.1.7 Gross Primary Product (GPP)") elif cod == "CGIAR/SRTM90_V4": dataset = ee.Image("CGIAR/SRTM90_V4") elevation = dataset.select("elevation") slope = ee.Terrain.slope(elevation) Map.setCenter(-112.8598, 36.2841, 10) Map.addLayer(slope, {"min": 0, "max": 60}, "slope") elif cod == "CIESIN/GPWv411/GPW_Basic_Demographic_Characteristics": dataset = ee.ImageCollection("CIESIN/GPWv411/GPW_Basic_Demographic_Characteristics").first() raster = dataset.select("basic_demographic_characteristics") raster_vis = { "max": 1000.0, "palette": ["ffffe7","86a192","509791","307296","2c4484","000066"], "min": 0.0 } Map.setCenter(79.1, 19.81, 3) Map.addLayer(raster, raster_vis, "basic_demographic_characteristics") elif cod == "CIESIN/GPWv411/GPW_Data_Context": dataset = ee.Image("CIESIN/GPWv411/GPW_Data_Context") raster = dataset.select("data_context") raster_vis = { "min": 200.0, "palette": ["ffffff","099506","f04923","e62440","706984","a5a5a5","ffe152","d4cc11","000000"], "max": 207.0 } Map.setCenter(-88.6, 26.4, 1) Map.addLayer(raster, raster_vis, "data_context") elif cod == "CIESIN/GPWv411/GPW_Land_Area": dataset = ee.Image("CIESIN/GPWv411/GPW_Land_Area") raster = dataset.select("land_area") raster_vis = { "min": 0.0, "palette": ["ecefb7","745638"], "max": 0.86 } Map.setCenter(26.4, 19.81, 1) Map.addLayer(raster, raster_vis, "land_area") elif cod == "CIESIN/GPWv411/GPW_Mean_Administrative_Unit_Area": dataset = ee.Image("CIESIN/GPWv411/GPW_Mean_Administrative_Unit_Area") raster = dataset.select("mean_administrative_unit_area") raster_vis = { "min": 0.0, "palette": ["ffffff","747474","656565","3c3c3c","2f2f2f","000000"], "max": 40000.0 } Map.setCenter(-88.6, 26.4, 1) Map.addLayer(raster, raster_vis, "mean_administrative_unit_area") elif cod == "CIESIN/GPWv411/GPW_National_Identifier_Grid": dataset = ee.Image("CIESIN/GPWv411/GPW_National_Identifier_Grid") raster = dataset.select("national_identifier_grid") raster_vis = { "min": 4.0, "palette": ["000000","ffffff"], "max": 999.0 } Map.setCenter(-88.6, 26.4, 1) Map.addLayer(raster, raster_vis, "national_identifier_grid") elif cod == "CIESIN/GPWv411/GPW_Population_Count": dataset = ee.ImageCollection("CIESIN/GPWv411/GPW_Population_Count").first() raster = dataset.select("population_count") raster_vis = { "max": 1000.0, "palette": ["ffffe7","86a192","509791","307296","2c4484","000066"], "min": 0.0} Map.setCenter(79.1, 19.81, 3) Map.addLayer(raster, raster_vis, "population_count") elif cod == "CIESIN/GPWv411/GPW_Population_Density": dataset = ee.ImageCollection("CIESIN/GPWv411/GPW_Population_Density").first() raster = dataset.select("population_density") raster_vis = { "max": 1000.0, "palette": ["ffffe7","FFc869","ffac1d","e17735","f2552c","9f0c21"], "min": 200.0 } Map.setCenter(79.1, 19.81, 3) Map.addLayer(raster, raster_vis, "population_density") elif cod == "CIESIN/GPWv411/GPW_UNWPP-Adjusted_Population_Count": dataset = ee.ImageCollection("CIESIN/GPWv411/GPW_UNWPP-Adjusted_Population_Count").first() raster = dataset.select("unwpp-adjusted_population_count") raster_vis = {"max": 1000.0, "palette": ["ffffe7","86a192","509791","307296","2c4484","000066"], "min": 0.0} Map.setCenter(79.1, 19.81, 3) Map.addLayer(raster, raster_vis, "unwpp-adjusted_population_count") elif cod == "CIESIN/GPWv411/GPW_UNWPP-Adjusted_Population_Density": dataset = ee.ImageCollection("CIESIN/GPWv411/GPW_UNWPP-Adjusted_Population_Density").first() raster = dataset.select("unwpp-adjusted_population_density") raster_vis = {"max": 1000.0, "palette": ["ffffe7","FFc869","ffac1d","e17735","f2552c","9f0c21"], "min": 0.0} Map.setCenter(79.1, 19.81, 3) Map.addLayer(raster, raster_vis, "unwpp-adjusted_population_density") elif cod == "CIESIN/GPWv411/GPW_Water_Area": dataset = ee.Image("CIESIN/GPWv411/GPW_Water_Area") raster = dataset.select("water_area") raster_vis = { "min": 0.0, "palette": ["f5f6da","180d02"], "max": 0.860558} Map.setCenter(79.1, 19.81, 3) Map.addLayer(raster, raster_vis, "water_area") elif cod == "CIESIN/GPWv411/GPW_Water_Mask": dataset = ee.Image("CIESIN/GPWv411/GPW_Water_Mask") raster = dataset.select("water_mask") raster_vis = { "min": 0.0, "palette": ["005ce6","00ffc5","bed2ff","aed0f1"], "max": 3.0 } Map.setCenter(-88.6, 26.4, 1) Map.addLayer(raster, raster_vis, "water_mask") elif cod == "COPERNICUS/CORINE/V20/100m/2012": dataset = ee.Image("COPERNICUS/CORINE/V20/100m/2012") landCover = dataset.select("landcover") Map.setCenter(16.436, 39.825, 6) Map.addLayer(landCover, {}, "Land Cover") elif cod == "COPERNICUS/DEM/GLO30": dataset = ee.ImageCollection("COPERNICUS/DEM/GLO30") elevation = dataset.select("DEM") elevationVis = { "min": 0.0, "max": 1000.0, 'palette': ["0000ff","00ffff","ffff00","ff0000","ffffff"], } Map.setCenter(-73.388672,5.353521, 4) Map.addLayer(elevation, elevationVis, "DEM") elif cod == "COPERNICUS/Landcover/100m/Proba-V-C3/Global": dataset = ee.Image("COPERNICUS/Landcover/100m/Proba-V-C3/Global/2019").select("discrete_classification") Map.setCenter(-88.6, 26.4, 1) Map.addLayer(dataset, {}, "Land Cover") elif cod == "COPERNICUS/S1_GRD": def ff(image): edge = image.lt(-30.0) maskedImage = image.mask() maskedImage = maskedImage.And(edge.Not()) return image.updateMask(maskedImage) imgVV = ee.ImageCollection("COPERNICUS/S1_GRD") \ .filter(ee.Filter.listContains("transmitterReceiverPolarisation", "VV")) \ .filter(ee.Filter.eq("instrumentMode", "IW")) \ .select("VV") \ .map(lambda x:ff(x)) desc = imgVV.filter(ee.Filter.eq("orbitProperties_pass", "DESCENDING")) asc = imgVV.filter(ee.Filter.eq("orbitProperties_pass", "ASCENDING")) spring = ee.Filter.date("2015-03-01", "2015-04-20") lateSpring = ee.Filter.date("2015-04-21", "2015-06-10") summer = ee.Filter.date("2015-06-11", "2015-08-31") descChange = ee.Image.cat(desc.filter(spring).mean(),desc.filter(lateSpring).mean(),desc.filter(summer).mean()) ascChange = ee.Image.cat(asc.filter(spring).mean(),asc.filter(lateSpring).mean(),asc.filter(summer).mean()) Map.setCenter(-73.388672,5.353521, 6) Map.addLayer(ascChange, {"min": -25, "max": 5}, "Multi-T Mean ASC", True) Map.addLayer(descChange, {"min": -25, "max": 5}, "Multi-T Mean DESC", True) elif cod == "COPERNICUS/S2": def maskS2clouds(image): qa = image.select("QA60") cloudBitMask = 1 << 10 cirrusBitMask = 1 << 11 mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(qa.bitwiseAnd(cirrusBitMask).eq(0)) return image.updateMask(mask).divide(10000) dataset = ee.ImageCollection("COPERNICUS/S2").filterDate("2018-01-01", "2018-01-31").filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", 20)).map(maskS2clouds) rgbVis = {"min": 0.0, "max": 0.3,"bands": ["B4", "B3", "B2"] } Map.setCenter(-73.388672,5.353521, 6) Map.addLayer(dataset.median(), rgbVis, "RGB") elif cod == "COPERNICUS/S2_CLOUD_PROBABILITY": s2Sr = ee.ImageCollection("COPERNICUS/S2_SR") s2Clouds = ee.ImageCollection("COPERNICUS/S2_CLOUD_PROBABILITY") START_DATE = ee.Date("2019-01-01") END_DATE = ee.Date("2019-03-01") MAX_CLOUD_PROBABILITY = 65 region = ee.Geometry.Rectangle([[-76.5, 2.0], [-74, 4.0]]) Map.setCenter(-75, 3, 12) def maskClouds(img): clouds = ee.Image(img.get("cloud_mask")).select("probability") isNotCloud = clouds.lt(MAX_CLOUD_PROBABILITY) return img.updateMask(isNotCloud) def maskEdges(s2_img): return s2_img.updateMask(s2_img.select("B8A").mask().updateMask(s2_img.select("B9").mask())) criteria = ee.Filter.And(ee.Filter.bounds(region), ee.Filter.date(START_DATE, END_DATE)) s2Sr = s2Sr.filter(criteria).map(maskEdges) s2Clouds = s2Clouds.filter(criteria) s2SrWithCloudMask = ee.Join.saveFirst("cloud_mask").apply({ 'primary': s2Sr, 'secondary': s2Clouds, 'condition': ee.Filter.equals(leftField= "system:index", rightField= "system:index") }) s2CloudMasked = ee.ImageCollection(s2SrWithCloudMask).map(maskClouds).median() rgbVis = {"min": 0, "max": 3000, "bands": ["B4", "B3", "B2"]} Map.addLayer(s2CloudMasked, rgbVis, "S2 SR masked at " + MAX_CLOUD_PROBABILITY + "%", True) elif cod == "COPERNICUS/S2_HARMONIZED": def maskS2clouds(image): qa = image.select("QA60") cloudBitMask = 1 << 10 cirrusBitMask = 1 << 11 mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(qa.bitwiseAnd(cirrusBitMask).eq(0)) return image.updateMask(mask).divide(10000) dataset = ee.ImageCollection("COPERNICUS/S2_HARMONIZED") \ .filterDate("2022-01-01", "2022-01-31") \ .filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", 20)) \ .map(maskS2clouds) rgbVis = { "min": 0.0, "max": 0.3, "bands": ["B4", "B3", "B2"], } Map.setCenter(-73.388672,5.353521, 6) Map.addLayer(dataset.median(), rgbVis, "RGB") elif cod == "COPERNICUS/S2_SR": def maskS2clouds(image): qa = image.select("QA60") cloudBitMask = 1 << 10 cirrusBitMask = 1 << 11 mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(qa.bitwiseAnd(cirrusBitMask).eq(0)) return image.updateMask(mask).divide(10000) dataset = ee.ImageCollection("COPERNICUS/S2_SR") \ .filterDate("2020-01-01", "2020-01-30") \ .filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE",20)) \ .map(maskS2clouds) visualization = { "min": 0.0, "max": 0.3, 'bands': ["B4", "B3", "B2"], } Map.setCenter(83.277, 17.7009, 12) Map.addLayer(dataset.mean(), visualization, "RGB") elif cod == "COPERNICUS/S2_SR_HARMONIZED": def maskS2clouds(image): qa = image.select("QA60") cloudBitMask = 1 << 10 cirrusBitMask = 1 << 11 mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(qa.bitwiseAnd(cirrusBitMask).eq(0)) return image.updateMask(mask).divide(10000) dataset = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED") \ .filterDate("2020-01-01", "2020-01-30") \ .filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE",20)) \ .map(maskS2clouds) visualization = { "min": 0.0, "max": 0.3, "bands": ["B4", "B3", "B2"], } Map.setCenter(83.277, 17.7009, 12) Map.addLayer(dataset.mean(), visualization, "RGB") elif cod == "COPERNICUS/S3/OLCI": dataset = ee.ImageCollection("COPERNICUS/S3/OLCI") \ .filterDate("2018-04-01", "2018-04-04") rgb = dataset.select(["Oa08_radiance", "Oa06_radiance", "Oa04_radiance"]) \ .median().multiply(ee.Image([0.00876539, 0.0123538, 0.0115198])) visParams = {"min": 0, "max": 6, "gamma": 1.5,} Map.setCenter(46.043, 1.45, 5) Map.addLayer(rgb, visParams, "RGB") elif cod == "COPERNICUS/S5P/NRTI/L3_AER_AI": collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_AER_AI") \ .select("absorbing_aerosol_index") \ .filterDate("2019-06-01", "2019-06-06") band_viz = { "min": -1, "max": 2.0, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P Aerosol") Map.setCenter(-118.82, 36.1, 5) elif cod == "COPERNICUS/S5P/NRTI/L3_AER_LH": collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_AER_LH") \ .select("aerosol_height") \ .filterDate("2019-06-01", "2019-06-06") band_viz = { "min": -81.17, "max": 67622.56, "palette": ["blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P Aerosol Height") Map.setCenter(44.09, 24.27, 4) elif cod == "COPERNICUS/S5P/NRTI/L3_CLOUD": collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_CLOUD") \ .select("cloud_fraction") \ .filterDate("2019-06-01", "2019-06-02") band_viz = { "min": 0, "max": 0.95, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P Cloud") Map.setCenter(-58.14, -10.47, 2) elif cod == "COPERNICUS/S5P/NRTI/L3_CO": collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_CO") \ .select("CO_column_number_density") \ .filterDate("2019-06-01", "2019-06-11") band_viz = { "min": 0, "max": 0.05, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P CO") Map.setCenter(-25.01, -4.28, 4) elif cod == "COPERNICUS/S5P/NRTI/L3_HCHO": collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_HCHO") \ .select("tropospheric_HCHO_column_number_density") \ .filterDate("2019-06-01", "2019-06-06") band_viz = { "min": 0.0, "max": 0.0003, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P HCHO") Map.setCenter(0.0, 0.0, 2) elif cod == "COPERNICUS/S5P/NRTI/L3_NO2": collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_NO2") \ .select("NO2_column_number_density") \ .filterDate("2019-06-01", "2019-06-06") band_viz = { "min": 0, "max": 0.0002, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P N02") Map.setCenter(65.27, 24.11, 4) elif cod == "COPERNICUS/S5P/NRTI/L3_O3": collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_O3") \ .select("O3_column_number_density") \ .filterDate("2019-06-01", "2019-06-05") band_viz = { "min": 0.12, "max": 0.15, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P O3") Map.setCenter(0.0, 0.0, 2) elif cod == "COPERNICUS/S5P/NRTI/L3_SO2": collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_SO2") \ .select("SO2_column_number_density") \ .filterDate("2019-06-01", "2019-06-11") band_viz = { "min": 0.0, "max": 0.0005, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P SO2") Map.setCenter(0.0, 0.0, 2) elif cod == "COPERNICUS/S5P/OFFL/L3_AER_AI": collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_AER_AI") \ .select("absorbing_aerosol_index") \ .filterDate("2019-06-01", "2019-06-06") band_viz = { "min": -1, "max": 2.0, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P Aerosol") Map.setCenter(-118.82, 36.1, 5) elif cod == "COPERNICUS/S5P/OFFL/L3_AER_LH": collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_AER_LH") \ .select("aerosol_height") \ .filterDate("2019-06-01", "2019-06-05") visualization = { "min": 0, "max": 6000, "palette": ["blue", "purple", "cyan", "green", "yellow", "red"] } Map.setCenter(44.09, 24.27, 4) Map.addLayer(collection.mean(), visualization, "S5P Aerosol Height") elif cod == "COPERNICUS/S5P/OFFL/L3_CH4": collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_CH4") \ .select("CH4_column_volume_mixing_ratio_dry_air") \ .filterDate("2019-06-01", "2019-07-16") band_viz = { "min": 1750, "max": 1900, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P CH4") Map.setCenter(0.0, 0.0, 2) elif cod == "COPERNICUS/S5P/OFFL/L3_CLOUD": collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_CLOUD") \ .select("cloud_fraction") \ .filterDate("2019-06-01", "2019-06-02") band_viz = { "min": 0, "max": 0.95, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P Cloud") Map.setCenter(-58.14, -10.47, 2) elif cod == "COPERNICUS/S5P/OFFL/L3_CO": collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_CO") \ .select("CO_column_number_density") \ .filterDate("2019-06-01", "2019-06-11") band_viz = { "min": 0, "max": 0.05, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P CO") Map.setCenter(-25.01, -4.28, 4) elif cod == "COPERNICUS/S5P/OFFL/L3_HCHO": collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_HCHO") \ .select("tropospheric_HCHO_column_number_density") \ .filterDate("2019-06-01", "2019-06-06") band_viz = { "min": 0.0, "max": 0.0003, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P HCHO") Map.setCenter(0.0, 0.0, 2) elif cod == "COPERNICUS/S5P/OFFL/L3_NO2": collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_NO2") \ .select("tropospheric_NO2_column_number_density") \ .filterDate("2019-06-01", "2019-06-06") band_viz = { "min": 0, "max": 0.0002, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P N02") Map.setCenter(65.27, 24.11, 4) elif cod == "COPERNICUS/S5P/OFFL/L3_O3": collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_O3") \ .select("O3_column_number_density") \ .filterDate("2019-06-01", "2019-06-05") band_viz = { "min": 0.12, "max": 0.15, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P O3") Map.setCenter(0.0, 0.0, 2) elif cod == "COPERNICUS/S5P/OFFL/L3_O3_TCL": collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_O3_TCL") \ .select("ozone_tropospheric_vertical_column") \ .filterDate("2019-06-01", "2019-07-01") band_viz = { "min": 0, "max": 0.02, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P O3") Map.setCenter(0.0, 0.0, 2) elif cod == "COPERNICUS/S5P/OFFL/L3_SO2": collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2") \ .select("SO2_column_number_density") \ .filterDate("2019-06-01", "2019-06-11") band_viz = { "min": 0.0, "max": 0.0005, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "S5P SO2") Map.setCenter(0.0, 0.0, 2) elif cod == "CPOM/CryoSat2/ANTARCTICA_DEM": dataset = ee.Image("CPOM/CryoSat2/ANTARCTICA_DEM") visualization = { "bands": ["elevation"], "min": 0.0, "max": 4000.0, "palette": ["001fff", "00ffff", "fbff00", "ff0000"] } Map.setCenter(17.0, -76.0, 3) Map.addLayer(dataset, visualization, "Elevation") elif cod == "CSIRO/SLGA": dataset = ee.ImageCollection("CSIRO/SLGA") \ .filter(ee.Filter.eq("attribute_code", "DES")) soilDepth = dataset.select("DES_000_200_EV") soilDepthVis = { "min": 0.1, "max": 1.84, "palette": ["8d6738", "252525"], } Map.setCenter(132.495, -21.984, 5) Map.addLayer(soilDepth, soilDepthVis, "Soil Depth") elif cod == "CSP/ERGo/1_0/Global/ALOS_CHILI": dataset = ee.Image("CSP/ERGo/1_0/Global/ALOS_CHILI") alosChili = dataset.select("constant") alosChiliVis = { "min": 0.0, "max": 255.0, } Map.setCenter(-105.8636, 40.3439, 11) Map.addLayer(alosChili, alosChiliVis, "ALOS CHILI") elif cod == "CSP/ERGo/1_0/Global/ALOS_landforms": dataset = ee.Image("CSP/ERGo/1_0/Global/ALOS_landforms") landforms = dataset.select("constant") landformsVis = { "min": 11.0, "max": 42.0, "palette": [ "141414", "383838", "808080", "EBEB8F", "F7D311", "AA0000", "D89382", "DDC9C9", "DCCDCE", "1C6330", "68AA63", "B5C98E", "E1F0E5", "a975ba", "6f198c" ], } Map.setCenter(-105.58, 40.5498, 11) Map.addLayer(landforms, landformsVis, "Landforms") elif cod == "CSP/ERGo/1_0/Global/ALOS_mTPI": dataset = ee.Image("CSP/ERGo/1_0/Global/ALOS_mTPI") alosMtpi = dataset.select("AVE") alosMtpiVis = { "min": -200.0, "max": 200.0, "palette": ["0b1eff", "4be450", "fffca4", "ffa011", "ff0000"], } Map.setCenter(-105.8636, 40.3439, 11) Map.addLayer(alosMtpi, alosMtpiVis, "ALOS mTPI") elif cod == "CSP/ERGo/1_0/Global/ALOS_topoDiversity": dataset = ee.Image("CSP/ERGo/1_0/Global/ALOS_topoDiversity") alosTopographicDiversity = dataset.select("constant") alosTopographicDiversityVis = { "min": 0.0, "max": 1.0, } Map.setCenter(-111.313, 39.724, 6) Map.addLayer(alosTopographicDiversity, alosTopographicDiversityVis, "ALOS Topographic Diversity") elif cod == "CSP/ERGo/1_0/Global/SRTM_CHILI": dataset = ee.Image("CSP/ERGo/1_0/Global/SRTM_CHILI") srtmChili = dataset.select("constant") srtmChiliVis = { "min": 0.0, "max": 255.0, } Map.setCenter(-105.8636, 40.3439, 11) Map.addLayer(srtmChili, srtmChiliVis, "SRTM CHILI") elif cod == "CSP/ERGo/1_0/Global/SRTM_landforms": dataset = ee.Image("CSP/ERGo/1_0/Global/SRTM_landforms") landforms = dataset.select("constant") landformsVis = { "min": 11.0, "max": 42.0, "palette": [ "141414", "383838", "808080", "EBEB8F", "F7D311", "AA0000", "D89382", "DDC9C9", "DCCDCE", "1C6330", "68AA63", "B5C98E", "E1F0E5", "a975ba", "6f198c" ], } Map.setCenter(-105.58, 40.5498, 11) Map.addLayer(landforms, landformsVis, "Landforms") elif cod == "CSP/ERGo/1_0/Global/SRTM_mTPI": dataset = ee.Image("CSP/ERGo/1_0/Global/SRTM_mTPI") srtmMtpi = dataset.select("elevation") srtmMtpiVis = { "min": -200.0, "max": 200.0, "palette": ["0b1eff", "4be450", "fffca4", "ffa011", "ff0000"], } Map.setCenter(-105.8636, 40.3439, 11) Map.addLayer(srtmMtpi, srtmMtpiVis, "SRTM mTPI") elif cod == "CSP/ERGo/1_0/Global/SRTM_topoDiversity": dataset = ee.Image("CSP/ERGo/1_0/Global/SRTM_topoDiversity") srtmTopographicDiversity = dataset.select("constant") srtmTopographicDiversityVis = { "min": 0.0, "max": 1.0, } Map.setCenter(-111.313, 39.724, 6) Map.addLayer(srtmTopographicDiversity, srtmTopographicDiversityVis,"SRTM Topographic Diversity") elif cod == "CSP/ERGo/1_0/US/CHILI": dataset = ee.Image("CSP/ERGo/1_0/US/CHILI") usChili = dataset.select("constant") usChiliVis = { "min": 0.0, "max": 255.0, } Map.setCenter(-105.8636, 40.3439, 11) Map.addLayer(usChili, usChiliVis, "US CHILI") elif cod == "CSP/ERGo/1_0/US/landforms": dataset = ee.Image("CSP/ERGo/1_0/US/landforms") landforms = dataset.select("constant") landformsVis = { "min": 11.0, "max": 42.0, "palette": [ "141414", "383838", "808080", "EBEB8F", "F7D311", "AA0000", "D89382", "DDC9C9", "DCCDCE", "1C6330", "68AA63", "B5C98E", "E1F0E5", "a975ba", "6f198c" ], } Map.setCenter(-105.58, 40.5498, 11) Map.addLayer(landforms, landformsVis, "Landforms") elif cod == "CSP/ERGo/1_0/US/lithology": dataset = ee.Image("CSP/ERGo/1_0/US/lithology") lithology = dataset.select("b1") lithologyVis = { "min": 0.0, "max": 20.0, "palette": [ "356EFF", "ACB6DA", "D6B879", "313131", "EDA800", "616161", "D6D6D6", "D0DDAE", "B8D279", "D5D378", "141414", "6DB155", "9B6D55", "FEEEC9", "D6B879", "00B7EC", "FFDA90", "F8B28C" ], } Map.setCenter(-105.8636, 40.3439, 11) Map.addLayer(lithology, lithologyVis, "Lithology") elif cod == "CSP/ERGo/1_0/US/mTPI": dataset = ee.Image("CSP/ERGo/1_0/US/mTPI") usMtpi = dataset.select("elevation") usMtpiVis = { "min": -200.0, "max": 200.0, "palette": ["0b1eff", "4be450", "fffca4", "ffa011", "ff0000"], } Map.setCenter(-105.8636, 40.3439, 11) Map.addLayer(usMtpi, usMtpiVis, "US mTPI") elif cod == "CSP/ERGo/1_0/US/physioDiversity": dataset = ee.Image("CSP/ERGo/1_0/US/physioDiversity") physiographicDiversity = dataset.select("b1") physiographicDiversityVis = { "min": 0.0, "max": 1.0, } Map.setCenter(-94.625, 39.825, 7) Map.addLayer(physiographicDiversity, physiographicDiversityVis,"Physiographic Diversity") elif cod == "CSP/ERGo/1_0/US/physiography": dataset = ee.Image("CSP/ERGo/1_0/US/physiography") physiography = dataset.select("constant") physiographyVis = { "min": 1100.0, "max": 4220.0, } Map.setCenter(-105.4248, 40.5242, 8) Map.addLayer(physiography, physiographyVis, "Physiography") elif cod == "CSP/ERGo/1_0/US/topoDiversity": dataset = ee.Image("CSP/ERGo/1_0/US/topoDiversity") usTopographicDiversity = dataset.select("constant") usTopographicDiversityVis = { "min": 0.0, "max": 1.0, } Map.setCenter(-111.313, 39.724, 6) Map.addLayer(usTopographicDiversity, usTopographicDiversityVis, "US Topographic Diversity") elif cod == "CSP/HM/GlobalHumanModification": dataset = ee.ImageCollection("CSP/HM/GlobalHumanModification") visualization = {"bands": ["gHM"], "min": 0.0, "max": 1.0, "palette": ["0c0c0c", "071aff", "ff0000", "ffbd03", "fbff05", "fffdfd"] } Map.centerObject(dataset) Map.addLayer(dataset, visualization, "Human modification") elif cod == "DLR/WSF/WSF2015/v1": dataset = ee.Image("DLR/WSF/WSF2015/v1") opacity = 0.75 blackBackground = ee.Image(0) Map.addLayer(blackBackground, None, "Black background", True, opacity) visualization = { "min": 0, "max": 255, } Map.addLayer(dataset, visualization, "Human settlement areas") Map.setCenter(90.45, 23.7, 7) elif cod == "DOE/ORNL/LandScan_HD/Ukraine_202201": dataset = ee.Image("DOE/ORNL/LandScan_HD/Ukraine_202201") vis = { "min": 0.0, "max": 10.0, "palette":["lemonchiffon", "khaki", "orange","orangered", "red", "maroon"], } Map.centerObject(dataset) Map.addLayer(dataset, vis, "Population Count") elif cod == "ECMWF/CAMS/NRT": dataset = ee.ImageCollection("ECMWF/CAMS/NRT").filter(ee.Filter.date("2019-01-01", "2019-01-31")) aod = dataset.select("total_aerosol_optical_depth_at_550nm_surface") visParams = { "min": 0.000096, "max": 3.582552, "palette": [ "5E4FA2", "3288BD", "66C2A5", "ABE0A4", "E6F598", "FFFFBF", "FEE08B", "FDAE61", "F46D43", "D53E4F", "9E0142" ] } Map.setCenter(-94.18, 16.8, 1) Map.addLayer(aod, visParams, "Total Aerosal Optical Depth") elif cod == "ECMWF/ERA5/DAILY": era5_2mt = ee.ImageCollection("ECMWF/ERA5/DAILY").select("mean_2m_air_temperature").filter(ee.Filter.date("2019-07-01", "2019-07-31")) era5_tp = ee.ImageCollection("ECMWF/ERA5/DAILY").select("total_precipitation").filter(ee.Filter.date("2019-07-01", "2019-07-31")) era5_2d = ee.ImageCollection("ECMWF/ERA5/DAILY").select("dewpoint_2m_temperature").filter(ee.Filter.date("2019-07-01", "2019-07-31")) era5_mslp = ee.ImageCollection("ECMWF/ERA5/DAILY").select("mean_sea_level_pressure").filter(ee.Filter.date("2019-07-01", "2019-07-31")) era5_sp = ee.ImageCollection("ECMWF/ERA5/DAILY").select("surface_pressure").filter(ee.Filter.date("2019-07-01", "2019-07-31")) era5_u_wind_10m = ee.ImageCollection("ECMWF/ERA5/DAILY").select("u_component_of_wind_10m").filter(ee.Filter.date("2019-07-01", "2019-07-31")) era5_sp = era5_sp.map(lambda image: image.divide(100).set("system:time_start", image.get("system:time_start"))) visTp = {"min": 0, "max": 0.1, "palette": ["#FFFFFF", "#00FFFF", "#0080FF", "#DA00FF", "#FFA400", "#FF0000"]} vis2mt = {"min": 250, "max": 320, "palette": [ "#000080", "#0000D9", "#4000FF", "#8000FF", "#0080FF", "#00FFFF", "#00FF80", "#80FF00", "#DAFF00", "#FFFF00", "#FFF500", "#FFDA00", "#FFB000", "#FFA400", "#FF4F00", "#FF2500", "#FF0A00", "#FF00FF"] } visWind = {"min": 0, "max": 30, "palette": [ "#FFFFFF", "#FFFF71", "#DEFF00", "#9EFF00", "#77B038", "#007E55", "#005F51", "#004B51", "#013A7B", "#023AAD"] } visPressure = {"min": 500, "max": 1150, "palette": ["#01FFFF", "#058BFF", "#0600FF", "#DF00FF", "#FF00FF", "#FF8C00", "#FF8C00"] } Map.addLayer(era5_tp.filter(ee.Filter.date("2019-07-15")), visTp, "Daily total precipitation sums") Map.addLayer(era5_2d.filter(ee.Filter.date("2019-07-15")), vis2mt, "Daily mean 2m dewpoint temperature") Map.addLayer(era5_2mt.filter(ee.Filter.date("2019-07-15")), vis2mt, "Daily mean 2m air temperature") Map.addLayer(era5_u_wind_10m.filter(ee.Filter.date("2019-07-15")), visWind, "Daily mean 10m u-component of wind") Map.addLayer(era5_sp.filter(ee.Filter.date("2019-07-15")), visPressure, "Daily mean surface pressure") Map.setCenter(21.2, 22.2, 2) elif cod == "ECMWF/ERA5/MONTHLY": dataset = ee.ImageCollection("ECMWF/ERA5/MONTHLY") visualization = { "bands": ["mean_2m_air_temperature"], "min": 250.0, "max": 320.0, "palette": ["#000080","#0000D9","#4000FF","#8000FF","#0080FF","#00FFFF","#00FF80","#80FF00","#DAFF00","#FFFF00","#FFF500","#FFDA00","#FFB000","#FFA400","#FF4F00","#FF2500","#FF0A00","#FF00FF"] } Map.setCenter(22.2, 21.2, 0) Map.addLayer(dataset, visualization, "Monthly average air temperature [K] at 2m height") elif cod == "ECMWF/ERA5_LAND/DAILY_RAW": dataset = ee.ImageCollection("ECMWF/ERA5_LAND/DAILY_RAW").filter(ee.Filter.date("2021-06-01", "2021-07-01")) visualization = { "bands": ["temperature_2m"], "min": 250.0, "max": 320.0, "palette": ["#000080","#0000D9","#4000FF","#8000FF","#0080FF","#00FFFF","#00FF80","#80FF00","#DAFF00","#FFFF00","#FFF500","#FFDA00","#FFB000","#FFA400","#FF4F00","#FF2500","#FF0A00","#FF00FF"] } Map.setCenter(-170.13, 45.62, 2) Map.addLayer(dataset, visualization, "Air temperature [K] at 2m height") elif cod == "ECMWF/ERA5_LAND/HOURLY": dataset = ee.ImageCollection("ECMWF/ERA5_LAND/HOURLY").filter(ee.Filter.date("2020-07-01", "2020-07-02")) visualization = { "bands": ["temperature_2m"], "min": 250.0, "max": 320.0, "palette": ["#000080","#0000D9","#4000FF","#8000FF","#0080FF","#00FFFF","#00FF80","#80FF00","#DAFF00","#FFFF00","#FFF500","#FFDA00","#FFB000","#FFA400","#FF4F00","#FF2500","#FF0A00","#FF00FF"] } Map.setCenter(22.2, 21.2, 0) Map.addLayer(dataset, visualization, "Air temperature [K] at 2m height") elif cod == "ECMWF/ERA5_LAND/MONTHLY_AGGR": dataset = ee.ImageCollection("ECMWF/ERA5_LAND/MONTHLY_AGGR").filter(ee.Filter.date("2020-02-01", "2020-07-10")) visualization = { "bands": ["temperature_2m"], "min": 250.0, "max": 320.0, "palette": ["#000080","#0000D9","#4000FF","#8000FF","#0080FF","#00FFFF","#00FF80","#80FF00","#DAFF00","#FFFF00","#FFF500","#FFDA00","#FFB000","#FFA400","#FF4F00","#FF2500","#FF0A00","#FF00FF"] } Map.setCenter(-170.13, 45.62, 2) Map.addLayer(dataset, visualization, "Air temperature [K] at 2m height") elif cod == "ECMWF/ERA5_LAND/MONTHLY_BY_HOUR": dataset = ee.ImageCollection("ECMWF/ERA5_LAND/MONTHLY_BY_HOUR").filter(ee.Filter.date("2020-07-01", "2020-08-01")) visualization = { "bands": ["temperature_2m"], "min": 250.0, "max": 320.0, "palette": ["#000080","#0000D9","#4000FF","#8000FF","#0080FF","#00FFFF","#00FF80","#80FF00","#DAFF00","#FFFF00","#FFF500","#FFDA00","#FFB000","#FFA400","#FF4F00","#FF2500","#FF0A00","#FF00FF"] } Map.setCenter(22.2, 21.2, 0) Map.addLayer(dataset, visualization, "Air temperature [K] at 2m height") elif cod == "EO1/HYPERION": dataset = ee.ImageCollection("EO1/HYPERION").filter(ee.Filter.date("2016-01-01", "2017-03-01")) rgb = dataset.select(["B050", "B023", "B015"]) rgbVis = { "min": 1000.0, "max": 14000.0, "gamma": 2.5, } Map.setCenter(162.0044, -77.3463, 9) Map.addLayer(rgb.median(), rgbVis, "RGB") elif cod == "EPA/Ecoregions/2013/L3": dataset = ee.FeatureCollection("EPA/Ecoregions/2013/L3") visParams = { "palette": ["0a3b04", "1a9924", "15d812"], "min": 23.0, "max": 3.57e+11, "opacity": 0.8, } image = ee.Image().float().paint(dataset, "shape_area") Map.setCenter(-99.814, 40.166, 5) Map.addLayer(image, visParams, "EPA/Ecoregions/2013/L3") Map.addLayer(dataset, None, "for Inspector", False) elif cod == "EPA/Ecoregions/2013/L4": dataset = ee.FeatureCollection("EPA/Ecoregions/2013/L4") visParams = { "palette": ["0a3b04", "1a9924", "15d812"], "min": 0.0, "max": 67800000000.0, "opacity": 0.8, } image = ee.Image().float().paint(dataset, "shape_area") Map.setCenter(-99.814, 40.166, 5) Map.addLayer(image, visParams, "EPA/Ecoregions/2013/L4") Map.addLayer(dataset, None, "for Inspector", False) elif cod == "ESA/CCI/FireCCI/5_1": dataset = ee.ImageCollection("ESA/CCI/FireCCI/5_1").filterDate("2020-01-01", "2020-12-31") burnedArea = dataset.select("BurnDate") baVis = { "min": 1, "max": 366, "palette": ["ff0000", "fd4100", "fb8200", "f9c400", "f2ff00", "b6ff05","7aff0a", "3eff0f", "02ff15", "00ff55", "00ff99", "00ffdd","00ddff", "0098ff", "0052ff", "0210ff", "3a0dfb", "7209f6","a905f1", "e102ed", "ff00cc", "ff0089", "ff0047", "ff0004"] } maxBA = burnedArea.max() Map.setCenter(0, 18, 2.1) Map.addLayer(maxBA, baVis, "Burned Area") elif cod == "ESA/GLOBCOVER_L4_200901_200912_V2_3": dataset = ee.Image("ESA/GLOBCOVER_L4_200901_200912_V2_3") landcover = dataset.select("landcover") Map.setCenter(-88.6, 26.4, 3) Map.addLayer(landcover, {}, "Landcover") elif cod == "ESA/WorldCover/v100": dataset = ee.ImageCollection("ESA/WorldCover/v100").first() visualization = { "bands": ["Map"], } Map.centerObject(dataset) Map.addLayer(dataset, visualization, "Landcover") elif cod == "ESA/WorldCover/v200": dataset = ee.ImageCollection("ESA/WorldCover/v200").first() visualization = { "bands": ["Map"], } Map.centerObject(dataset) Map.addLayer(dataset, visualization, "Landcover") elif cod == "FAO/GAUL/2015/level0": dataset = ee.FeatureCollection("FAO/GAUL/2015/level0") Map.setCenter(7.82, 49.1, 4) styleParams = { "fillColor": "#b5ffb4", "color": "#00909F", "width": 1.0, } dataset = dataset.style(styleParams) Map.addLayer(dataset, {}, "Country Boundaries") elif cod == "FAO/GAUL/2015/level1": dataset = ee.FeatureCollection("FAO/GAUL/2015/level1") Map.setCenter(7.82, 49.1, 4) styleParams = { "fillColor": "b5ffb4", "color": "#00909F", "width": 1.0, } dataset = dataset.style(styleParams) Map.addLayer(dataset, {}, "First Level Administrative Units") elif cod == "FAO/GAUL/2015/level2": dataset = ee.FeatureCollection("FAO/GAUL/2015/level2") Map.setCenter(12.876, 42.682, 5) styleParams = { "fillColor": "#b5ffb4", "color": "#00909F", "width": 1.0, } dataset = dataset.style(styleParams) Map.addLayer(dataset, {}, "Second Level Administrative Units") elif cod == "FAO/GAUL_SIMPLIFIED_500m/2015/level0": dataset = ee.FeatureCollection("FAO/GAUL_SIMPLIFIED_500m/2015/level0") Map.setCenter(7.82, 49.1, 4) styleParams = { "fillColor": "#b5ffb4", "color": "#00909F", "width": 1.0, } dataset = dataset.style(styleParams) Map.addLayer(dataset, {}, "Country Boundaries") elif cod == "FAO/GAUL_SIMPLIFIED_500m/2015/level1": dataset = ee.FeatureCollection("FAO/GAUL_SIMPLIFIED_500m/2015/level1") Map.setCenter(7.82, 49.1, 4) styleParams = { "fillColor": "#b5ffb4", "color": "#00909F", "width": 1.0, } dataset = dataset.style(styleParams) Map.addLayer(dataset, {}, "First Level Administrative Units") elif cod == "FAO/GAUL_SIMPLIFIED_500m/2015/level2": dataset = ee.FeatureCollection("FAO/GAUL_SIMPLIFIED_500m/2015/level2") Map.setCenter(12.876, 42.682, 5) styleParams = { "fillColor": "b5ffb4", "color": "00909F", "width": 1.0, } dataset = dataset.style(styleParams) Map.addLayer(dataset, {}, "Second Level Administrative Units") elif cod == "FAO/GHG/1/DROSA_A": dataset = ee.ImageCollection("FAO/GHG/1/DROSA_A") visualization = { "bands": ["cropland"], "min": 1.0, "max": 60.0, "palette": ["white", "red"] } Map.setCenter(108.0, -0.4, 6) Map.addLayer(dataset, visualization, "Cropland area drained (Annual)") elif cod == "FAO/GHG/1/DROSE_A": dataset = ee.ImageCollection("FAO/GHG/1/DROSE_A") visualization = { "bands": ["croplandc"], "min": 0.1, "max": 0.1, "palette": ["yellow", "red"] } Map.setCenter(108.0, -0.4, 6) Map.addLayer(dataset, visualization, "Cropland C emissions (Annual)") elif cod == "FAO/SOFO/1/FPP": coll = ee.ImageCollection("FAO/SOFO/1/FPP") image = coll.first().select("FPP_1km") Map.setCenter(17.5, 20, 3) Map.addLayer(image, {"min": 0, "max": 12, "palette": ["blue", "yellow", "red"]},"Forest proximate people – 1km cutoff distance") elif cod == "FAO/SOFO/1/TPP": coll = ee.ImageCollection("FAO/SOFO/1/TPP") image = coll.first().select("TPP_1km") Map.setCenter(17.5, 20, 3) Map.addLayer( image, {"min": 0, "max": 12, "palette": ["blue", "yellow", "red"]}, "Tree proximate people – 1km cutoff distance") elif cod == "FAO/WAPOR/2/L1_AETI_D": coll = ee.ImageCollection("FAO/WAPOR/2/L1_AETI_D") image = coll.first() Map.setCenter(17.5, 20, 3) Map.addLayer(image, {"min": 0, "max": 50}) elif cod == "FAO/WAPOR/2/L1_E_D": coll = ee.ImageCollection("FAO/WAPOR/2/L1_E_D") image = coll.first() Map.setCenter(17.5, 20, 3) Map.addLayer(image, {"min": 0, "max": 10}) elif cod == "FAO/WAPOR/2/L1_I_D": coll = ee.ImageCollection("FAO/WAPOR/2/L1_I_D") image = coll.first() Map.setCenter(17.5, 20, 3) Map.addLayer(image, {"min": 0, "max": 50}) elif cod == "FAO/WAPOR/2/L1_NPP_D": coll = ee.ImageCollection("FAO/WAPOR/2/L1_NPP_D") image = coll.first() Map.setCenter(17.5, 20, 3) Map.addLayer(image, {"min": 0, "max": 5000}) elif cod == "FAO/WAPOR/2/L1_RET_D": coll = ee.ImageCollection("FAO/WAPOR/2/L1_RET_D") image = coll.first() Map.setCenter(17.5, 20, 3) Map.addLayer(image, {"min": 0, "max": 100}) elif cod == "FAO/WAPOR/2/L1_RET_E": coll = ee.ImageCollection("FAO/WAPOR/2/L1_RET_E") image = coll.first() Map.setCenter(17.5, 20, 3) Map.addLayer(image, {"min": 0, "max": 100}) elif cod == "FAO/WAPOR/2/L1_T_D": coll = ee.ImageCollection("FAO/WAPOR/2/L1_T_D") image = coll.first() Map.setCenter(17.5, 20, 3) Map.addLayer(image, {"min": 0, "max": 50}) elif cod == "FIRMS": dataset = ee.ImageCollection("FIRMS").filter( ee.Filter.date("2018-08-01", "2018-08-10")) fires = dataset.select("T21") firesVis = { "min": 325.0, "max": 400.0, "palette": ["red", "orange", "yellow"], } Map.setCenter(-119.086, 47.295, 6) Map.addLayer(fires, firesVis, "Fires") elif cod == "Finland/MAVI/VV/50cm": dataset = ee.ImageCollection("Finland/MAVI/VV/50cm") Map.setCenter(25.7416, 62.2446, 16) Map.addLayer(dataset, None, "Finland 50 cm(False color)") elif cod == "GFW/GFF/V1/fishing_hours": dataset = ee.ImageCollection("GFW/GFF/V1/fishing_hours").filter(ee.Filter.date("2016-12-01", "2017-01-01")) trawlers = dataset.select("trawlers") trawlersVis = { "min": 0.0, "max": 5.0, } Map.setCenter(16.201, 36.316, 7) Map.addLayer(trawlers.max(), trawlersVis, "Trawlers") elif cod == "GFW/GFF/V1/vessel_hours": dataset = ee.ImageCollection("GFW/GFF/V1/vessel_hours").filter(ee.Filter.date("2016-12-01", "2017-01-01")) trawlers = dataset.select("trawlers") trawlersVis = { "min": 0.0, "max": 5.0, } Map.setCenter(130.61, 34.287, 8) Map.addLayer(trawlers.max(), trawlersVis, "Trawlers") elif cod == "GLCF/GLS_WATER": dataset = ee.ImageCollection("GLCF/GLS_WATER") water = dataset.select("water") waterVis = { "min": 1.0, "max": 4.0, "palette": ["FAFAFA", "00C5FF", "DF73FF", "828282", "CCCCCC"], } Map.setCenter(-79.3094, 44.5693, 8) Map.addLayer(water, waterVis, "Water") elif cod == "GLIMS/20210914": dataset = ee.FeatureCollection("GLIMS/20210914") visParams = { "palette": ["gray", "cyan", "blue"], "min": 0.0, "max": 10.0, "opacity": 0.8, } image = ee.Image().float().paint(dataset, "area") Map.setCenter(-35.618, 66.743, 7) Map.addLayer(image, visParams, "GLIMS/20210914") Map.addLayer(dataset, None, "for Inspector", False) elif cod == "Finland/SMK/VV/50cm": dataset = ee.ImageCollection("Finland/SMK/VV/50cm") Map.setCenter(25.7416, 62.2446, 16) Map.addLayer(dataset, None, "Finland 50 cm(False color)") elif cod == "Finland/SMK/V/50cm": dataset = ee.ImageCollection("Finland/SMK/V/50cm") Map.setCenter(24.9, 60.2, 17) Map.addLayer(dataset, None, "Finland 50 cm(color)") elif cod == "GLIMS/current": dataset = ee.FeatureCollection("GLIMS/current") visParams = { "palette": ["gray", "cyan", "blue"], "min": 0.0, "max": 10.0, "opacity": 0.8, } image = ee.Image().float().paint(dataset, "area") Map.setCenter(-35.618, 66.743, 7) Map.addLayer(image, visParams, "GLIMS/current") Map.addLayer(dataset, None, "for Inspector", False) elif cod == "GLOBAL_FLOOD_DB/MODIS_EVENTS/V1": gfd = ee.ImageCollection("GLOBAL_FLOOD_DB/MODIS_EVENTS/V1") hurricaneIsaacDartmouthId = 3977 hurricaneIsaacUsa = ee.Image(gfd.filterMetadata("id", "equals", hurricaneIsaacDartmouthId).first()) Map.setOptions("SATELLITE") Map.setCenter(-90.2922, 29.4064, 9) Map.addLayer( hurricaneIsaacUsa.select("flooded").selfMask(),{"min": 0, "max": 1, "palette": "001133"},"Hurricane Isaac - Inundation Extent") durationPalette = ["C3EFFE", "1341E8", "051CB0", "001133"] Map.addLayer(hurricaneIsaacUsa.select("duration").selfMask(),{"min": 0, "max": 4, "palette": durationPalette},"Hurricane Isaac - Duration") gfdFloodedSum = gfd.select("flooded").sum() Map.addLayer(gfdFloodedSum.selfMask(),{"min": 0, "max": 10, "palette": durationPalette},"GFD Satellite Observed Flood Plain") jrc = gfd.select("jrc_perm_water").sum().gte(1) Map.addLayer(jrc.selfMask(),{"min": 0, "max": 1, "palette": "C3EFFE"},"JRC Permanent Water") elif cod == "GOOGLE/DYNAMICWORLD/V1": COL_FILTER = ee.Filter.And(ee.Filter.bounds(ee.Geometry.Point(20.6729, 52.4305)),ee.Filter.date("2021-04-02", "2021-04-03")) dwCol = ee.ImageCollection("GOOGLE/DYNAMICWORLD/V1").filter(COL_FILTER) s2Col = ee.ImageCollection("COPERNICUS/S2").filter(COL_FILTER) DwS2Col = ee.Join.saveFirst("s2_img").apply(dwCol, s2Col, ee.Filter.equals({"leftField": "system:index", "rightField": "system:index"})) dwImage = ee.Image(DwS2Col.first()) s2Image = ee.Image(dwImage.get("s2_img")) CLASS_NAMES = ["water", "trees", "grass", "flooded_vegetation", "crops","shrub_and_scrub", "built", "bare", "snow_and_ice"] VIS_PALETTE = ["419BDF", "397D49", "88B053", "7A87C6","E49635", "DFC35A", "C4281B", "A59B8F","B39FE1"] dwRgb = dwImage.select("label").visualize({"min": 0, "max": 8, "palette": VIS_PALETTE}).divide(255) top1Prob = dwImage.select(CLASS_NAMES).reduce(ee.Reducer.max()) top1ProbHillshade = ee.Terrain.hillshade(top1Prob.multiply(100)).divide(255) dwRgbHillshade = dwRgb.multiply(top1ProbHillshade) Map.setCenter(20.6729, 52.4305, 12) Map.addLayer(s2Image,{"min": 0, "max": 3000, "bands": ["B4", "B3", "B2"]},"Sentinel-2 L1C") Map.addLayer(dwRgbHillshade,{"min": 0, "max": 0.65},"Dynamic World") elif cod == "GOOGLE/Research/open-buildings/v2/polygons": t = ee.FeatureCollection("GOOGLE/Research/open-buildings/v2/polygons") t_060_065 = t.filter("confidence >= 0.60 && confidence < 0.65") t_065_070 = t.filter("confidence >= 0.65 && confidence < 0.70") t_gte_070 = t.filter("confidence >= 0.70") Map.addLayer(t_060_065, {"color": "FF0000"}, "Buildings confidence [0.60 0.65)") Map.addLayer(t_065_070, {"color": "FFFF00"}, "Buildings confidence [0.65 0.70)") Map.addLayer(t_gte_070, {"color": "00FF00"}, "Buildings confidence >= 0.70") Map.setCenter(3.389, 6.492, 17) Map.setOptions("SATELLITE") elif cod == "GRIDMET/DROUGHT": collection = ee.ImageCollection("GRIDMET/DROUGHT") dS = "2020-03-30" dE = "2020-03-30" dSUTC = ee.Date(dS, "GMT") dEUTC = ee.Date(dE, "GMT") filtered = collection.filterDate(dSUTC, dEUTC.advance(1, "day")) PDSI = filtered.select("pdsi") Z = filtered.select("z") SPI2y = filtered.select("spi2y") SPEI2y = filtered.select("spei2y") EDDI2y = filtered.select("spei2y") usdmColors = ["0000aa","0000ff","00aaff","00ffff","aaff55","ffffff","ffff00","fcd37f","ffaa00","e60000","730000"] minColorbar= -2.5 maxColorbar= 2.5 colorbarOptions1 = { "min":minColorbar, "max":maxColorbar, "palette": usdmColors} minColorbar= -6 maxColorbar= 6 colorbarOptions2 = { "min":minColorbar, "max":maxColorbar, "palette": usdmColors} Map.addLayer(ee.Image(PDSI.first()), colorbarOptions2, "PDSI") Map.addLayer(ee.Image(Z.first()), colorbarOptions2, "Palmer-Z") Map.addLayer(ee.Image(SPI2y.first()), colorbarOptions1, "SPI-48months") Map.addLayer(ee.Image(SPEI2y.first()), colorbarOptions1, "SPEI-48months") Map.addLayer(ee.Image(EDDI2y.first()), colorbarOptions1, "EDDI-48months") elif cod == "Germany/Brandenburg/orthos/20cm": dataset = ee.Image("Germany/Brandenburg/orthos/20cm") Map.setCenter(13.386091, 52.507899, 18) Map.addLayer(dataset, None, "Brandenburg 20cm") elif cod == "HYCOM/sea_surface_elevation": dataset = ee.ImageCollection("HYCOM/sea_surface_elevation").filter(ee.Filter.date("2018-08-01", "2018-08-15")) surfaceElevation = dataset.select("surface_elevation") surfaceElevationVis = { "min": -2000.0, "max": 2000.0, "palette": ["blue", "cyan", "yellow", "red"], } Map.setCenter(-28.1, 28.3, 1) Map.addLayer(surfaceElevation, surfaceElevationVis, "Surface Elevation") elif cod == "HYCOM/sea_temp_salinity": dataset = ee.ImageCollection("HYCOM/sea_temp_salinity").filter(ee.Filter.date("2018-08-01", "2018-08-15")) seaWaterTemperature = dataset.select("water_temp_0").map(lambda image: ee.Image(image).multiply(0.001).add(20)) visParams = { "min": -2.0, "max": 34.0, "palette": ["000000", "005aff", "43c8c8", "fff700", "ff0000"], } Map.setCenter(-88.6, 26.4, 1) Map.addLayer(seaWaterTemperature.mean(), visParams, "Sea Water Temperature") elif cod == "HYCOM/sea_water_velocity": velocity = ee.Image("HYCOM/sea_water_velocity/2014040700").divide(1000) Map.addLayer(velocity.select("velocity_u_0").hypot(velocity.select("velocity_v_0"))) Map.setCenter(-60, 33, 5) elif cod == "IDAHO_EPSCOR/GRIDMET": dataset = ee.ImageCollection("IDAHO_EPSCOR/GRIDMET").filter(ee.Filter.date("2018-08-01", "2018-08-15")) maximumTemperature = dataset.select("tmmx") maximumTemperatureVis = { "min": 290.0, "max": 314.0, "palette": ["d8d8d8", "4addff", "5affa3", "f2ff89", "ff725c"], } Map.setCenter(-115.356, 38.686, 5) Map.addLayer(maximumTemperature, maximumTemperatureVis, "Maximum Temperature") elif cod == "IDAHO_EPSCOR/MACAv2_METDATA": dataset = ee.ImageCollection("IDAHO_EPSCOR/MACAv2_METDATA").filter(ee.Filter.date("2018-08-01", "2018-08-15")) maximumTemperature = dataset.select("tasmax") maximumTemperatureVis = { "min": 290.0, "max": 314.0, "palette": ["d8d8d8", "4addff", "5affa3", "f2ff89", "ff725c"], } Map.setCenter(-84.37, 33.5, 5) Map.addLayer(maximumTemperature, maximumTemperatureVis, "Maximum Temperature") elif cod == "IDAHO_EPSCOR/MACAv2_METDATA_MONTHLY": dataset = ee.ImageCollection("IDAHO_EPSCOR/MACAv2_METDATA_MONTHLY").filter(ee.Filter.date("2018-07-01", "2018-08-01")) maximumTemperature = dataset.select("tasmax") maximumTemperatureVis = { "min": 290.0, "max": 314.0, "palette": ["d8d8d8", "4addff", "5affa3", "f2ff89", "ff725c"], } Map.setCenter(-115.356, 38.686, 5) Map.addLayer(maximumTemperature, maximumTemperatureVis, "Maximum Temperature") elif cod == "IDAHO_EPSCOR/TERRACLIMATE": dataset = ee.ImageCollection("IDAHO_EPSCOR/TERRACLIMATE").filter(ee.Filter.date("2017-07-01", "2017-08-01")) maximumTemperature = dataset.select("tmmx") maximumTemperatureVis = { "min": -300.0, "max": 300.0, "palette": ["1a3678", "2955bc", "5699ff", "8dbae9", "acd1ff", "caebff", "e5f9ff", "fdffb4", "ffe6a2", "ffc969", "ffa12d", "ff7c1f", "ca531a", "ff0000", "ab0000"]} Map.setCenter(71.72, 52.48, 3) Map.addLayer(maximumTemperature, maximumTemperatureVis, "Maximum Temperature") elif cod == "IGN/RGE_ALTI/1M/2_0/FXX": dataset = ee.Image("IGN/RGE_ALTI/1M/2_0/FXX") elevation = dataset.select("MNT") elevationVis = { "min": 0, "max": 1000, "palette": ["006600", "002200", "fff700", "ab7634", "c4d0ff", "ffffff"]} Map.addLayer(elevation, elevationVis, "Elevation") Map.setCenter(3, 47, 5) ###https://developers.google.com/earth-engine/datasets/catalog/ISDASOIL_Africa_v1_aluminium_extractable elif cod == "ISDASOIL/Africa/v1/aluminium_extractable": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ Map.setCenter(25, -3, 2) raw = ee.Image("ISDASOIL/Africa/v1/aluminium_extractable") Map.addLayer( raw.select(0).sldStyle(mean_0_20), {},"Aluminium, extractable, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Aluminium, extractable, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Aluminium, extractable, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Aluminium, extractable, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) Map.addLayer(converted.select(0), {"min": 0, "max": 100},"Aluminium, extractable, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/bedrock_depth": mean_0_200 = """ """ stdev_0_200 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/bedrock_depth") Map.addLayer(raw.select(0).sldStyle(mean_0_200), {},"Bedrock depth, mean visualization, 0-200 cm") Map.addLayer(raw.select(1).sldStyle(stdev_0_200), {},"Bedrock depth, stdev visualization, 0-200 cm") visualization = {"min": 27, "max": 200} Map.setCenter(25, -3, 2) Map.addLayer(raw.select(0), visualization, "Bedrock depth, mean, 0-200 cm") elif cod == "ISDASOIL/Africa/v1/bulk_density": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/bulk_density") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Bulk density, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Bulk density, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Bulk density, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Bulk density, stdev visualization, 20-50 cm") converted = raw.divide(100) visualization = {"min": 1, "max": 1.5} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Bulk density, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/calcium_extractable": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/calcium_extractable") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Calcium, extractable, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Calcium, extractable, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Calcium, extractable, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Calcium, extractable, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) visualization = {"min": 100, "max": 2000} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Calcium, extractable, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/carbon_organic": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/carbon_organic") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Carbon, organic, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Carbon, organic, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Carbon, organic, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Carbon, organic, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) visualization = {"min": 0, "max": 20} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Carbon, organic, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/carbon_total": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/carbon_total") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Carbon, total, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Carbon, total, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Carbon, total, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Carbon, total, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) visualization = {"min": 0, "max": 60} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Carbon, total, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/cation_exchange_capacity": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/cation_exchange_capacity") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Cation exchange capacity, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Cation exchange capacity, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Cation exchange capacity, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Cation exchange capacity, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) visualization = {"min": 0, "max": 25} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Cation exchange capacity, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/clay_content": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/clay_content") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Clay content, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Clay content, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Clay content, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Clay content, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) visualization = {"min": 0, "max": 50} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Clay content, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/fcc": raw = ee.Image("ISDASOIL/Africa/v1/fcc").select(0) converted = ee.Image(raw.mod(3000).copyProperties(raw)) Map.setCenter(25, -3, 2) Map.addLayer(converted, {}, "Fertility Capability Classification") elif cod == "ISDASOIL/Africa/v1/iron_extractable": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/iron_extractable") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Iron, extractable, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Iron, extractable, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Iron, extractable, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Iron, extractable, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) visualization = {"min": 0, "max": 140} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Iron, extractable, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/magnesium_extractable": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/magnesium_extractable") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Magnesium, extractable, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Magnesium, extractable, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Magnesium, extractable, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Magnesium, extractable, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) visualization = {"min": 0, "max": 500} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Magnesium, extractable, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/nitrogen_total": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/nitrogen_total") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Nitrogen, total, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Nitrogen, total, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Nitrogen, total, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Nitrogen, total, stdev visualization, 20-50 cm") converted = raw.divide(100).exp().subtract(1) visualization = {"min": 0, "max": 10000} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Nitrogen, total, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/ph": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/ph") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"ph, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"ph, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"ph, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"ph, stdev visualization, 20-50 cm") converted = raw.divide(10) visualization = {"min": 4, "max": 8} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "ph, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/phosphorus_extractable": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/phosphorus_extractable") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Phosphorus extractable, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Phosphorus extractable, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Phosphorus extractable, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Phosphorus extractable, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) visualization = {"min": 0, "max": 15} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Phosphorus extractable, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/potassium_extractable": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/potassium_extractable") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Potassium extractable, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Potassium extractable, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Potassium extractable, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Potassium extractable, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) visualization = {"min": 0, "max": 250} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Potassium extractable, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/sand_content": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/sand_content") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Sand content, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Sand content, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Sand content, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Sand content, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) visualization = {"min": 0, "max": 3000} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Sand content, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/silt_content": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/silt_content") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Silt content, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Silt content, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Silt content, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Silt content, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) visualization = {"min": 0, "max": 15} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Silt content, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/stone_content": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/stone_content") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Stone content, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Stone content, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Stone content, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Stone content, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) visualization = {"min": 0, "max": 6} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Stone content, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/sulphur_extractable": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/sulphur_extractable") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Sulphur extractable, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Sulphur extractable, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Sulphur extractable, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Sulphur extractable, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) visualization = {"min": 0, "max": 20} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Sulphur extractable, mean, 0-20 cm") elif cod == "ISDASOIL/Africa/v1/texture_class": raw = ee.Image("ISDASOIL/Africa/v1/texture_class") Map.addLayer(raw.select(0), {}, "Texture class, 0-20 cm") Map.addLayer(raw.select(1), {}, "Texture class, 20-50 cm") Map.setCenter(25, -3, 2) elif cod == "ISDASOIL/Africa/v1/zinc_extractable": mean_0_20 = """ """ mean_20_50 = """ """ stdev_0_20 = """ """ stdev_20_50 = """ """ raw = ee.Image("ISDASOIL/Africa/v1/zinc_extractable") Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Zinc, extractable, mean visualization, 0-20 cm") Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Zinc, extractable, mean visualization, 20-50 cm") Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Zinc, extractable, stdev visualization, 0-20 cm") Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Zinc, extractable, stdev visualization, 20-50 cm") converted = raw.divide(10).exp().subtract(1) visualization = {"min": 0, "max": 10} Map.setCenter(25, -3, 2) Map.addLayer(converted.select(0), visualization, "Zinc, extractable, mean, 0-20 cm") elif cod == "JAXA/ALOS/AVNIR-2/ORI": dataset = ee.ImageCollection("JAXA/ALOS/AVNIR-2/ORI").filter(ee.Filter.date("2011-01-01", "2011-04-01")) avnir2OriRgb = dataset.select(["B3", "B2", "B1"]) avnir2OriRgbVis = { "min": 0.0, "max": 255.0, } Map.setCenter(138.7302, 35.3641, 12) Map.addLayer(avnir2OriRgb, avnir2OriRgbVis, "AVNIR-2 ORI RGB") elif cod == "JAXA/ALOS/AW3D30/V3_2": dataset = ee.ImageCollection("JAXA/ALOS/AW3D30/V3_2") elevation = dataset.select("DSM") elevationVis = { "min": 0, "max": 5000, "palette": ["0000ff", "00ffff", "ffff00", "ff0000", "ffffff"] } Map.setCenter(138.73, 35.36, 11) Map.addLayer(elevation, elevationVis, "Elevation") proj = elevation.first().select(0).projection() slopeReprojected = ee.Terrain.slope(elevation.mosaic().setDefaultProjection(proj)) Map.addLayer(slopeReprojected, {"min": 0, "max": 45}, "Slope") elif cod == "JAXA/ALOS/PALSAR-2/Level2_2/ScanSAR": collection = ee.ImageCollection("JAXA/ALOS/PALSAR-2/Level2_2/ScanSAR").filterBounds(ee.Geometry.Point(143, -5)) image = collection.first() Map.addLayer(image.select(["HH"]), {"min": 0, "max": 8000}, "HH polarization") Map.centerObject(image) elif cod =="JAXA/ALOS/PALSAR/YEARLY/FNF": dataset = ee.ImageCollection("JAXA/ALOS/PALSAR/YEARLY/FNF").filterDate("2017-01-01", "2017-12-31") forestNonForest = dataset.select("fnf") forestNonForestVis = { "min": 1.0, "max": 3.0, "palette": ["006400", "FEFF99", "0000FF"], } Map.setCenter(136.85, 37.37, 4) Map.addLayer(forestNonForest, forestNonForestVis, "Forest/Non-Forest") elif cod == "JAXA/ALOS/PALSAR/YEARLY/FNF4": dataset = ee.ImageCollection("JAXA/ALOS/PALSAR/YEARLY/FNF4").filterDate("2018-01-01", "2018-12-31") forestNonForest = dataset.select("fnf") forestNonForestVis = { "min": 1.0, "max": 4.0, "palette": ["00B200","83EF62","FFFF99","0000FF"], } Map.setCenter(136.85, 37.37, 4) Map.addLayer(forestNonForest, forestNonForestVis, "Forest/Non-Forest") elif cod == "JAXA/ALOS/PALSAR/YEARLY/SAR": dataset = ee.ImageCollection("JAXA/ALOS/PALSAR/YEARLY/SAR").filter(ee.Filter.date("2017-01-01", "2018-01-01")) sarHh = dataset.select("HH") sarHhVis = { "min": 0.0, "max": 10000.0, } Map.setCenter(136.85, 37.37, 4) Map.addLayer(sarHh, sarHhVis, "SAR HH") elif cod == "JAXA/ALOS/PALSAR/YEARLY/SAR_EPOCH": dataset = ee.ImageCollection("JAXA/ALOS/PALSAR/YEARLY/SAR_EPOCH").filter(ee.Filter.date("2017-01-01", "2018-01-01")) sarHh = dataset.select("HH") sarHhVis = { "min": 0.0, "max": 10000.0, } Map.setCenter(136.85, 37.37, 4) Map.addLayer(sarHh, sarHhVis, "SAR HH") elif cod == "JAXA/GCOM-C/L3/LAND/LAI/V1": dataset = ee.ImageCollection("JAXA/GCOM-C/L3/LAND/LAI/V1").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) dataset = dataset.mean().multiply(0.001) visualization = { "bands": ["LAI_AVE"], "min": -7, "max": 7, "palette": [ "040274","040281","0502a3","0502b8","0502ce","0502e6", "0602ff","235cb1","307ef3","269db1","30c8e2","32d3ef", "3be285","3ff38f","86e26f","3ae237","b5e22e","d6e21f", "fff705","ffd611","ffb613","ff8b13","ff6e08","ff500d", "ff0000","de0101","c21301","a71001","911003", ] } Map.setCenter(128.45, 33.33, 5) Map.addLayer(dataset, visualization, "Leaf Area Index") elif cod == "JAXA/GCOM-C/L3/LAND/LAI/V2": dataset = ee.ImageCollection("JAXA/GCOM-C/L3/LAND/LAI/V2").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) dataset = dataset.mean().multiply(0.001) visualization = { "bands": ["LAI_AVE"], "min": -7, "max": 7, "palette": [ "040274","040281","0502a3","0502b8","0502ce","0502e6", "0602ff","235cb1","307ef3","269db1","30c8e2","32d3ef", "3be285","3ff38f","86e26f","3ae237","b5e22e","d6e21f", "fff705","ffd611","ffb613","ff8b13","ff6e08","ff500d", "ff0000","de0101","c21301","a71001","911003", ] } Map.setCenter(128.45, 33.33, 5) Map.addLayer(dataset, visualization, "Leaf Area Index") elif cod == "JAXA/GCOM-C/L3/LAND/LAI/V3": dataset = ee.ImageCollection("JAXA/GCOM-C/L3/LAND/LAI/V3").filterDate("2021-12-01", "2022-01-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) dataset = dataset.mean().multiply(0.001) visualization = { "bands": ["LAI_AVE"], "min": -7, "max": 7, "palette": [ "040274","040281","0502a3","0502b8","0502ce","0502e6", "0602ff","235cb1","307ef3","269db1","30c8e2","32d3ef", "3be285","3ff38f","86e26f","3ae237","b5e22e","d6e21f", "fff705","ffd611","ffb613","ff8b13","ff6e08","ff500d", "ff0000","de0101","c21301","a71001","911003", ] } Map.setCenter(128.45, 33.33, 5) Map.addLayer(dataset, visualization, "Leaf Area Index") elif cod == "JAXA/GCOM-C/L3/LAND/LST/V1": dataset = ee.ImageCollection("JAXA/GCOM-C/L3/LAND/LST/V1").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) dataset = dataset.mean().multiply(0.02) visualization = { "bands": ["LST_AVE"], "min": 250, "max": 316, "palette": [ "040274","040281","0502a3","0502b8","0502ce","0502e6", "0602ff","235cb1","307ef3","269db1","30c8e2","32d3ef", "3be285","3ff38f","86e26f","3ae237","b5e22e","d6e21f", "fff705","ffd611","ffb613","ff8b13","ff6e08","ff500d", "ff0000","de0101","c21301","a71001","911003", ] } Map.setCenter(128.45, 33.33, 5) Map.addLayer(dataset, visualization, "Land Surface Temperature") elif cod == "JAXA/GCOM-C/L3/LAND/LST/V2": dataset = ee.ImageCollection("JAXA/GCOM-C/L3/LAND/LST/V2").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) dataset = dataset.mean().multiply(0.02) visualization = { "bands": ["LST_AVE"], "min": 250, "max": 316, "palette": [ "040274","040281","0502a3","0502b8","0502ce","0502e6", "0602ff","235cb1","307ef3","269db1","30c8e2","32d3ef", "3be285","3ff38f","86e26f","3ae237","b5e22e","d6e21f", "fff705","ffd611","ffb613","ff8b13","ff6e08","ff500d", "ff0000","de0101","c21301","a71001","911003", ] } Map.setCenter(128.45, 33.33, 5) Map.addLayer(dataset, visualization, "Land Surface Temperature") elif cod == "JAXA/GCOM-C/L3/LAND/LST/V3": dataset = ee.ImageCollection("JAXA/GCOM-C/L3/LAND/LST/V3").filterDate("2021-12-01", "2022-01-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) dataset = dataset.mean().multiply(0.02) visualization = { "bands": ["LST_AVE"], "min": 250, "max": 316, "palette": [ "040274","040281","0502a3","0502b8","0502ce","0502e6", "0602ff","235cb1","307ef3","269db1","30c8e2","32d3ef", "3be285","3ff38f","86e26f","3ae237","b5e22e","d6e21f", "fff705","ffd611","ffb613","ff8b13","ff6e08","ff500d", "ff0000","de0101","c21301","a71001","911003", ] } Map.setCenter(128.45, 33.33, 5) Map.addLayer(dataset, visualization, "Land Surface Temperature") elif cod == "JAXA/GCOM-C/L3/OCEAN/CHLA/V1": dataset = ee.ImageCollection("JAXA/GCOM-C/L3/OCEAN/CHLA/V1").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) image = dataset.mean().multiply(0.0016).log10() vis = { "bands": ["CHLA_AVE"], "min": -2, "max": 2, "palette": [ "3500a8","0800ba","003fd6", "00aca9","77f800","ff8800", "b30000","920000","880000" ] } Map.addLayer(image, vis, "Chlorophyll-a concentration") Map.setCenter(128.45, 33.33, 5) elif cod == "JAXA/GCOM-C/L3/OCEAN/CHLA/V2": dataset = ee.ImageCollection("JAXA/GCOM-C/L3/OCEAN/CHLA/V2").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) image = dataset.mean().multiply(0.0016).log10() vis = { "bands": ["CHLA_AVE"], "min": -2, "max": 2, "palette": [ "3500a8","0800ba","003fd6", "00aca9","77f800","ff8800", "b30000","920000","880000" ] } Map.addLayer(image, vis, "Chlorophyll-a concentration") Map.setCenter(128.45, 33.33, 5) elif cod == "JAXA/GCOM-C/L3/OCEAN/CHLA/V3": dataset = ee.ImageCollection("JAXA/GCOM-C/L3/OCEAN/CHLA/V3").filterDate("2021-12-01", "2022-01-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) image = dataset.mean().multiply(0.0016).log10() vis = { "bands": ["CHLA_AVE"], "min": -2, "max": 2, "palette": [ "3500a8","0800ba","003fd6", "00aca9","77f800","ff8800", "b30000","920000","880000" ] } Map.addLayer(image, vis, "Chlorophyll-a concentration") Map.setCenter(128.45, 33.33, 5) elif cod == "JAXA/GCOM-C/L3/OCEAN/SST/V1": dataset = ee.ImageCollection("JAXA/GCOM-C/L3/OCEAN/SST/V1").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) dataset = dataset.mean().multiply(0.0012).add(-10) vis = { "bands": ["SST_AVE"], "min": 0, "max": 30, "palette": ["000000", "005aff", "43c8c8", "fff700", "ff0000"], } Map.setCenter(128.45, 33.33, 5) Map.addLayer(dataset, vis, "Sea Surface Temperature") elif cod == "JAXA/GCOM-C/L3/OCEAN/SST/V2": dataset = ee.ImageCollection("JAXA/GCOM-C/L3/OCEAN/SST/V2").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) dataset = dataset.mean().multiply(0.0012).add(-10) vis = { "bands": ["SST_AVE"], "min": 0, "max": 30, "palette": ["000000", "005aff", "43c8c8", "fff700", "ff0000"], } Map.setCenter(128.45, 33.33, 5) Map.addLayer(dataset, vis, "Sea Surface Temperature") elif cod == "JAXA/GCOM-C/L3/OCEAN/SST/V3": dataset = ee.ImageCollection("JAXA/GCOM-C/L3/OCEAN/SST/V3").filterDate("2021-12-01", "2022-01-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) dataset = dataset.mean().multiply(0.0012).add(-10) vis = { "bands": ["SST_AVE"], "min": 0, "max": 30, "palette": ["000000", "005aff", "43c8c8", "fff700", "ff0000"], } Map.setCenter(128.45, 33.33, 5) Map.addLayer(dataset, vis, "Sea Surface Temperature") elif cod == "JAXA/GPM_L3/GSMaP/v6/operational": dataset = ee.ImageCollection("JAXA/GPM_L3/GSMaP/v6/operational").filter(ee.Filter.date("2018-08-06", "2018-08-07")) precipitation = dataset.select("hourlyPrecipRate") precipitationVis = { "min": 0.0, "max": 30.0, "palette": ["1621a2", "ffffff", "03ffff", "13ff03", "efff00", "ffb103", "ff2300"], } Map.setCenter(-90.7, 26.12, 2) Map.addLayer(precipitation, precipitationVis, "Precipitation") elif cod == "JAXA/GPM_L3/GSMaP/v6/reanalysis": dataset = ee.ImageCollection("JAXA/GPM_L3/GSMaP/v6/reanalysis").filter(ee.Filter.date("2014-02-01", "2014-02-02")) precipitation = dataset.select("hourlyPrecipRate") precipitationVis = { "min": 0.0, "max": 30.0, "palette": ["1621a2", "ffffff", "03ffff", "13ff03", "efff00", "ffb103", "ff2300"], } Map.setCenter(-90.7, 26.12, 2) Map.addLayer(precipitation, precipitationVis, "Precipitation") elif cod == "JCU/Murray/GIC/global_tidal_wetland_change/2019": dataset = ee.Image("JCU/Murray/GIC/global_tidal_wetland_change/2019") Map.setCenter(103.7, 1.3, 12) Map.setOptions("SATELLITE") plasma = [ "0d0887", "3d049b", "6903a5", "8d0fa1", "ae2891", "cb4679", "df6363", "f0844c", "faa638", "fbcc27", "f0f921" ] Map.addLayer(dataset.select("twprobabilityStart"), {"palette": plasma, "min": 0, "max": 100},"twprobabilityStart", False, 1) Map.addLayer(dataset.select("twprobabilityEnd"), {"palette": plasma, "min": 0, "max": 100},"twprobabilityEnd", False, 1) lossPalette = ["FE4A49"] gainPalette = ["2AB7CA"] Map.addLayer(dataset.select("loss"), {"palette": lossPalette, "min": 1, "max": 1},"Tidal wetland loss", True, 1) Map.addLayer(dataset.select("gain"), {"palette": gainPalette, "min": 1, "max": 1},"Tidal wetland gain", True, 1) viridis = ["440154", "414487", "2a788e", "22a884", "7ad151", "fde725"] Map.addLayer(dataset.select("lossYear"), {"palette": viridis, "min": 4, "max": 19},"Year of loss", False, 0.9) Map.addLayer(dataset.select("gainYear"), {"palette": viridis, "min": 4, "max": 19},"Year of gain", False, 0.9) classPalette = ["9e9d9d", "ededed", "FF9900", "009966", "960000", "006699"] classNames = ["None", "None", "Tidal flat", "Mangrove", "None", "Tidal marsh"] Map.addLayer(dataset.select("lossType"), {"palette": classPalette, "min": 0, "max": 5}, "Loss type", False, 0.9) Map.addLayer(dataset.select("gainType"), {"palette": classPalette, "min": 0, "max": 5}, "Gain type", False, 0.9) elif cod == "JRC/D5/EUCROPMAP/V1": image = ee.Image("JRC/D5/EUCROPMAP/V1/2018") Map.addLayer(image, {}, "EUCROPMAP 2018") Map.setCenter(10, 48, 4) elif cod == "JRC/GHSL/P2016/BUILT_LDSMT_GLOBE_V1": dataset = ee.Image("JRC/GHSL/P2016/BUILT_LDSMT_GLOBE_V1") builtUpMultitemporal = dataset.select("built") visParams = { "min": 1.0, "max": 6.0, "palette": ["0c1d60", "000000", "448564", "70daa4", "83ffbf", "ffffff"], } Map.setCenter(8.9957, 45.5718, 12) Map.addLayer(builtUpMultitemporal, visParams, "Built-Up Multitemporal") elif cod == "JRC/GHSL/P2016/POP_GPW_GLOBE_V1": dataset = ee.ImageCollection("JRC/GHSL/P2016/POP_GPW_GLOBE_V1").filter(ee.Filter.date("2015-01-01", "2015-12-31")) populationCount = dataset.select("population_count") populationCountVis = { "min": 0.0, "max": 200.0, "palette": ["060606", "337663", "337663", "ffffff"], } Map.setCenter(78.22, 22.59, 3) Map.addLayer(populationCount, populationCountVis, "Population Count") elif cod == "JRC/GHSL/P2016/SMOD_POP_GLOBE_V1": dataset = ee.ImageCollection("JRC/GHSL/P2016/SMOD_POP_GLOBE_V1").filter(ee.Filter.date("2015-01-01", "2015-12-31")) degreeOfUrbanization = dataset.select("smod_code") visParams = { "min": 0.0, "max": 3.0, "palette": ["000000", "448564", "70daa4", "ffffff"], } Map.setCenter(114.96, 31.13, 4) Map.addLayer(degreeOfUrbanization, visParams, "Degree of Urbanization") elif cod == "JRC/GSW1_4/GlobalSurfaceWater": dataset = ee.Image("JRC/GSW1_4/GlobalSurfaceWater") visualization = { "bands": ["occurrence"], "min": 0.0, "max": 100.0, "palette": ["ffffff", "ffbbbb", "0000ff"] } Map.setCenter(59.414, 45.182, 6) Map.addLayer(dataset, visualization, "Occurrence") elif cod == "JRC/GSW1_4/Metadata": dataset = ee.Image("JRC/GSW1_4/Metadata") visualization = { "bands": ["detections", "valid_obs", "total_obs"], "min": 100.0, "max": 900.0, } Map.setCenter(71.72, 52.48, 0) Map.addLayer(dataset, visualization, "Detections/Observations") elif cod == "JRC/GSW1_4/MonthlyHistory": dataset = ee.Image("JRC/GSW1_4/MonthlyHistory/2020_06") visualization = { "bands": ["water"], "min": 0.0, "max": 2.0, "palette": ["ffffff", "fffcb8", "0905ff"] } Map.setCenter(-121.234, 38.109, 7) Map.addLayer(dataset, visualization, "Water") elif cod == "JRC/GSW1_4/MonthlyRecurrence": dataset = ee.ImageCollection("JRC/GSW1_4/MonthlyRecurrence") visualization = { "bands": ["monthly_recurrence"], "min": 0.0, "max": 100.0, "palette": ["ffffff", "ffbbbb", "0000ff"] } Map.setCenter(-51.482, -0.835, 6) Map.addLayer(dataset, visualization, "Monthly Recurrence") elif cod == "JRC/GSW1_4/YearlyHistory": dataset = ee.ImageCollection("JRC/GSW1_4/YearlyHistory") visualization = { "bands": ["waterClass"], "min": 0.0, "max": 3.0, "palette": ["cccccc", "ffffff", "99d9ea", "0000ff"] } Map.setCenter(59.414, 45.182, 7) Map.addLayer(dataset, visualization, "Water Class") elif cod == "JRC/GWIS/GlobFire/v2/DailyPerimeters": folder = "JRC/GWIS/GlobFire/v2/DailyPerimeters" def printAssetList(listAssetsOutput): print("Asset list:", listAssetsOutput["assets"]) ee.data.listAssets(folder, {}, printAssetList) tableName = "JRC/GWIS/GlobFire/v2/DailyPerimeters/2020" computeArea = lambda f: f.set({"area": f.area()}) features = ee.FeatureCollection(tableName).map(computeArea) visParams = { "palette": ["f5ff64", "b5ffb4", "beeaff", "ffc0e8", "8e8dff", "adadad"], "min": 0.0, "max": 600000000.0, "opacity": 0.8, } image = ee.Image().float().paint(features, "area") Map.addLayer(image, visParams, "GlobFire 2020") Map.addLayer(features, None, "For Inspector", False) Map.setCenter(-121.23, 39.7, 12) elif cod == "JRC/GWIS/GlobFire/v2/FinalPerimeters": dataset = ee.FeatureCollection("JRC/GWIS/GlobFire/v2/FinalPerimeters") visParams = { "palette": ["f5ff64", "b5ffb4", "beeaff", "ffc0e8", "8e8dff", "adadad"], "min": 0.0, "max": 600000000.0, "opacity": 0.8, } image = ee.Image().float().paint(dataset, "area") Map.addLayer(image, visParams, "GlobFire Final") Map.addLayer(dataset, None, "for Inspector", False) Map.setCenter(-122.121, 38.56, 12) elif cod == "JRC/LUCAS_HARMO/COPERNICUS_POLYGONS/V1/2018": dataset = ee.FeatureCollection("JRC/LUCAS_HARMO/COPERNICUS_POLYGONS/V1/2018") visParams = { "min": 35, "max": 60 } dataset2 = dataset.map(lambda f: ee.Feature(f.buffer(5000))) image = ee.Image().float().paint(dataset2, "gps_lat").randomVisualizer() Map.addLayer(ee.Image(1), {"min":0, "max":1}, "background") Map.addLayer(image, visParams, "LUCAS Polygons") Map.addLayer(dataset, None, "for Inspector", False) Map.setCenter(19.514, 51.82, 8) elif cod == "JRC/LUCAS_HARMO/THLOC/V1": dataset = ee.FeatureCollection("JRC/LUCAS_HARMO/THLOC/V1") Map.addLayer(dataset, {}, "LUCAS Points (data)", False) dataset = dataset.style({ "color": "489734", "pointSize": 3 }) Map.setCenter(-3.8233, 40.609, 10) Map.addLayer(dataset, {}, "LUCAS Points (styled green)") elif cod == "KNTU/LiDARLab/IranLandCover/V1": dataset = ee.Image("KNTU/LiDARLab/IranLandCover/V1") visualization = { "bands": ["classification"] } Map.setCenter(54.0, 33.0, 5) Map.addLayer(dataset, visualization, "Classification") elif cod == "LANDFIRE/Fire/FRG/v1_2_0": dataset = ee.ImageCollection("LANDFIRE/Fire/FRG/v1_2_0") visualization = { "bands": ["FRG"] } Map.setCenter(-121.671, 40.699, 5) Map.addLayer(dataset, visualization, "FRG") elif cod == "LANDFIRE/Fire/MFRI/v1_2_0": dataset = ee.ImageCollection("LANDFIRE/Fire/MFRI/v1_2_0") visualization = { "bands": ["MFRI"] } Map.setCenter(-121.671, 40.699, 5) Map.addLayer(dataset, visualization, "MFRI") elif cod == "LANDFIRE/Fire/PLS/v1_2_0": dataset = ee.ImageCollection("LANDFIRE/Fire/PLS/v1_2_0") visualization = { "bands": ["PLS"] } Map.setCenter(-121.671, 40.699, 5) Map.addLayer(dataset, visualization, "PLS") elif cod == "LANDFIRE/Fire/PMS/v1_2_0": dataset = ee.ImageCollection("LANDFIRE/Fire/PMS/v1_2_0") visualization = { "bands": ["PMS"] } Map.setCenter(-121.671, 40.699, 5) Map.addLayer(dataset, visualization, "PMS") elif cod == "LANDFIRE/Fire/PRS/v1_2_0": dataset = ee.ImageCollection("LANDFIRE/Fire/PRS/v1_2_0") visualization = { "bands": ["PRS"] } Map.setCenter(-121.671, 40.699, 5) Map.addLayer(dataset, visualization, "PRS") elif cod == "LANDFIRE/Fire/SClass/v1_4_0": dataset = ee.ImageCollection("LANDFIRE/Fire/SClass/v1_4_0") visualization = { "bands": ["SClass"] } Map.setCenter(-121.671, 40.699, 5) Map.addLayer(dataset, visualization, "SClass") elif cod == "LANDFIRE/Fire/VCC/v1_4_0": dataset = ee.ImageCollection("LANDFIRE/Fire/VCC/v1_4_0") visualization = { "bands": ["VCC"] } Map.setCenter(-121.671, 40.699, 5) Map.addLayer(dataset, visualization, "VCC") elif cod == "LANDFIRE/Fire/VDep/v1_4_0": dataset = ee.ImageCollection("LANDFIRE/Fire/VDep/v1_4_0") visualization = { "bands": ["VDep"] } Map.setCenter(-121.671, 40.699, 5) Map.addLayer(dataset, visualization, "VDep") elif cod == "LANDFIRE/Vegetation/BPS/v1_4_0": dataset = ee.ImageCollection("LANDFIRE/Vegetation/BPS/v1_4_0") visualization = { "bands": ["BPS"] } Map.setCenter(-121.671, 40.699, 5) Map.addLayer(dataset, visualization, "BPS") elif cod == "LANDFIRE/Vegetation/ESP/v1_2_0/AK": dataset = ee.Image("LANDFIRE/Vegetation/ESP/v1_2_0/AK") visualization = { "bands": ["ESP"] } Map.setCenter(-151.011, 63.427, 8) Map.addLayer(dataset, visualization, "ESP") elif cod == "LANDFIRE/Vegetation/ESP/v1_2_0/CONUS": dataset = ee.Image("LANDFIRE/Vegetation/ESP/v1_2_0/CONUS") visualization = { "bands": ["ESP"] } Map.setCenter(-121.671, 40.699, 5) Map.addLayer(dataset, visualization, "ESP") elif cod == "LANDFIRE/Vegetation/ESP/v1_2_0/HI": dataset = ee.Image("LANDFIRE/Vegetation/ESP/v1_2_0/HI") visualization = { "bands": ["ESP"] } Map.setCenter(-155.3, 19.627, 8) Map.addLayer(dataset, visualization, "ESP") elif cod == "LANDFIRE/Vegetation/EVC/v1_4_0": dataset = ee.ImageCollection("LANDFIRE/Vegetation/EVC/v1_4_0") visualization = { "bands": ["EVC"] } Map.setCenter(-121.671, 40.699, 5) Map.addLayer(dataset, visualization, "EVC") elif cod == "LANDFIRE/Vegetation/EVH/v1_4_0": dataset = ee.ImageCollection("LANDFIRE/Vegetation/EVH/v1_4_0") visualization = { "bands": ["EVH"] } Map.setCenter(-121.671, 40.699, 5) Map.addLayer(dataset, visualization, "EVH") elif cod == "LANDFIRE/Vegetation/EVT/v1_4_0": dataset = ee.ImageCollection("LANDFIRE/Vegetation/EVT/v1_4_0") visualization = { "bands": ["EVT"] } Map.setCenter(-121.671, 40.699, 5) Map.addLayer(dataset, visualization, "EVT") elif cod == "LANDSAT/GLS1975": dataset = ee.ImageCollection("LANDSAT/GLS1975") FalseColor = dataset.select(["30", "20", "10"]) FalseColorVis = { "gamma": 1.6 } Map.setCenter(44.517, 25.998, 5) Map.addLayer(FalseColor, FalseColorVis, "False Color") elif cod == "LANDSAT/GLS2005": dataset = ee.ImageCollection("LANDSAT/GLS2005") trueColor321 = dataset.select(["30", "20", "10"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, {}, "True Color (321)") elif cod == "LANDSAT/GLS2005_L5": dataset = ee.ImageCollection("LANDSAT/GLS2005_L5") trueColor321 = dataset.select(["30", "20", "10"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, {}, "True Color (321)") elif cod == "LANDSAT/GLS2005_L7": dataset = ee.ImageCollection("LANDSAT/GLS2005_L7") trueColor321 = dataset.select(["30", "20", "10"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, {}, "True Color (321)") elif cod == "LANDSAT/LC08/C02/T1": dataset = ee.ImageCollection("LANDSAT/LC08/C02/T1").filterDate("2017-01-01", "2017-12-31") trueColor432 = dataset.select(["B4", "B3", "B2"]) trueColor432Vis = { "min": 0.0, "max": 30000.0 } Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") elif cod == "LANDSAT/LC08/C02/T1_L2": dataset = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate("2021-05-01", "2021-06-01") def applyScaleFactors(image): opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) thermalBands = image.select("ST_B.*").multiply(0.00341802).add(149.0) return image.addBands(opticalBands, None, True).addBands(thermalBands, None, True) dataset = dataset.map(applyScaleFactors) visualization = { "bands": ["SR_B4", "SR_B3", "SR_B2"], "min": 0.0, "max": 0.3 } Map.setCenter(-114.2579, 38.9275, 8) Map.addLayer(dataset, visualization, "True Color (432)") elif cod == "LANDSAT/LC08/C02/T1_RT": dataset = ee.ImageCollection("LANDSAT/LC08/C02/T1_RT").filterDate("2017-01-01", "2017-12-31") trueColor432 = dataset.select(["B4", "B3", "B2"]) trueColor432Vis = { "min": 0.0, "max": 30000.0 } Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") elif cod == "LANDSAT/LC08/C02/T1_RT_TOA": dataset = ee.ImageCollection("LANDSAT/LC08/C02/T1_RT_TOA").filterDate("2017-01-01", "2017-12-31") trueColor432 = dataset.select(["B4", "B3", "B2"]) trueColor432Vis = { "min": 0.0, "max": 0.4 } Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") elif cod == "LANDSAT/LC08/C02/T1_TOA": dataset = ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA").filterDate("2017-01-01", "2017-12-31") trueColor432 = dataset.select(["B4", "B3", "B2"]) trueColor432Vis = { "min": 0.0, "max": 0.4} Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") elif cod == "LANDSAT/LC08/C02/T2": dataset = ee.ImageCollection("LANDSAT/LC08/C02/T2").filterDate("2017-01-01", "2017-12-31") trueColor432 = dataset.select(["B4", "B3", "B2"]) trueColor432Vis = { "min": 0.0, "max": 30000.0 } Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") elif cod == "LANDSAT/LC08/C02/T2_L2": dataset = ee.ImageCollection("LANDSAT/LC08/C02/T2_L2").filterDate("2021-05-01", "2021-06-01") def applyScaleFactors(image): opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) thermalBands = image.select("ST_B.*").multiply(0.00341802).add(149.0) return image.addBands(opticalBands, None, True) .addBands(thermalBands, None, True) dataset = dataset.map(applyScaleFactors) visualization = { "bands": ["SR_B4", "SR_B3", "SR_B2"], "min": 0.0, "max": 0.3 } Map.setCenter(-83, 24, 8) Map.addLayer(dataset, visualization, "True Color (432)") elif cod == "LANDSAT/LC08/C02/T2_TOA": dataset = ee.ImageCollection("LANDSAT/LC08/C02/T2_TOA").filterDate("2017-01-01", "2017-12-31") trueColor432 = dataset.select(["B4", "B3", "B2"]) trueColor432Vis = { "min": 0.0, "max": 0.4 } Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") elif cod == "LANDSAT/LC09/C02/T1": dataset = ee.ImageCollection("LANDSAT/LC09/C02/T1").filterDate("2022-01-01", "2022-02-01") trueColor432 = dataset.select(["B4", "B3", "B2"]) trueColor432Vis = { "min": 0.0, "max": 30000.0 } Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") elif cod == "LANDSAT/LC09/C02/T1_L2": dataset = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate("2022-01-01", "2022-02-01") def applyScaleFactors(image): opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) thermalBands = image.select("ST_B.*").multiply(0.00341802).add(149.0) return image.addBands(opticalBands, None, True).addBands(thermalBands, None, True) dataset = dataset.map(applyScaleFactors) visualization = { "bands": ["SR_B4", "SR_B3", "SR_B2"], "min": 0.0, "max": 0.3 } Map.setCenter(-114.2579, 38.9275, 8) Map.addLayer(dataset, visualization, "True Color (432)") elif cod == "LANDSAT/LC09/C02/T1_TOA": dataset = ee.ImageCollection("LANDSAT/LC09/C02/T1_TOA").filterDate("2022-01-01", "2022-02-01") trueColor432 = dataset.select(["B4", "B3", "B2"]) trueColor432Vis = { "min": 0.0, "max": 0.4} Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") elif cod == "LANDSAT/LC09/C02/T2": dataset = ee.ImageCollection("LANDSAT/LC09/C02/T2").filterDate("2022-01-01", "2022-02-01") trueColor432 = dataset.select(["B4", "B3", "B2"]) trueColor432Vis = { "min": 0.0, "max": 30000.0} Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") elif cod == "LANDSAT/LC09/C02/T2_L2": dataset = ee.ImageCollection("LANDSAT/LC09/C02/T2_L2").filterDate("2022-01-01", "2022-02-01") def applyScaleFactors(image): opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) thermalBands = image.select("ST_B.*").multiply(0.00341802).add(149.0) return image.addBands(opticalBands, None, True).addBands(thermalBands, None, True) dataset = dataset.map(applyScaleFactors) visualization = { "bands": ["SR_B4", "SR_B3", "SR_B2"], "min": 0.0, "max": 0.3} Map.setCenter(-83, 24, 8) Map.addLayer(dataset, visualization, "True Color (432)") elif cod == "LANDSAT/LC09/C02/T2_TOA": dataset = ee.ImageCollection("LANDSAT/LC09/C02/T2_TOA").filterDate("2022-01-01", "2022-02-01") trueColor432 = dataset.select(["B4", "B3", "B2"]) trueColor432Vis = { "min": 0.0, "max": 0.4} Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") elif cod == "LANDSAT/LE07/C02/T1": dataset = ee.ImageCollection("LANDSAT/LE07/C02/T1").filterDate("1999-01-01", "2002-12-31") trueColor321 = dataset.select(["B3", "B2", "B1"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, {}, "True Color (321)") elif cod == "LANDSAT/LE07/C02/T1_L2": dataset = ee.ImageCollection("LANDSAT/LE07/C02/T1_L2").filterDate("2017-06-01", "2017-07-01") def applyScaleFactors(image): opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) thermalBand = image.select("ST_B6").multiply(0.00341802).add(149.0) return image.addBands(opticalBands, None, True).addBands(thermalBand, None, True) dataset = dataset.map(applyScaleFactors) visualization = { "bands": ["SR_B3", "SR_B2", "SR_B1"], "min": 0.0, "max": 0.3} Map.setCenter(-114.2579, 38.9275, 8) Map.addLayer(dataset, visualization, "True Color (321)") elif cod == "LANDSAT/LE07/C02/T1_RT": dataset = ee.ImageCollection("LANDSAT/LE07/C02/T1_RT").filterDate("1999-01-01", "2002-12-31") trueColor321 = dataset.select(["B3", "B2", "B1"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, {}, "True Color (321)") elif cod == "LANDSAT/LE07/C02/T1_RT_TOA": dataset = ee.ImageCollection("LANDSAT/LE07/C02/T1_RT_TOA").filterDate("1999-01-01", "2002-12-31") trueColor321 = dataset.select(["B3", "B2", "B1"]) trueColor321Vis = { "min": 0.0, "max": 0.4, "gamma": 1.2} Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") elif cod == "LANDSAT/LE07/C02/T1_TOA": dataset = ee.ImageCollection("LANDSAT/LE07/C02/T1_TOA").filterDate("1999-01-01", "2002-12-31") trueColor321 = dataset.select(["B3", "B2", "B1"]) trueColor321Vis = { "min": 0.0, "max": 0.4, "gamma": 1.2} Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") elif cod == "LANDSAT/LE07/C02/T2": dataset = ee.ImageCollection("LANDSAT/LE07/C02/T2").filterDate("1999-01-01", "2002-12-31") trueColor321 = dataset.select(["B3", "B2", "B1"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, {}, "True Color (321)") elif cod == "LANDSAT/LE07/C02/T2_L2": dataset = ee.ImageCollection("LANDSAT/LE07/C02/T2_L2").filterDate("2017-06-01", "2017-07-01") def applyScaleFactors(image): opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) thermalBand = image.select("ST_B6").multiply(0.00341802).add(149.0) return image.addBands(opticalBands, None, True).addBands(thermalBand, None, True) dataset = dataset.map(applyScaleFactors) visualization = { "bands": ["SR_B3", "SR_B2", "SR_B1"], "min": 0.0, "max": 0.3} Map.setCenter(-83, 24, 8) Map.addLayer(dataset, visualization, "True Color (321)") elif cod == "LANDSAT/LE07/C02/T2_TOA": dataset = ee.ImageCollection("LANDSAT/LE07/C02/T2_TOA").filterDate("1999-01-01", "2002-12-31") trueColor321 = dataset.select(["B3", "B2", "B1"]) trueColor321Vis = { "min": 0.0, "max": 0.4, "gamma": 1.2} Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") elif cod == "LANDSAT/LM01/C02/T1": dataset = ee.ImageCollection("LANDSAT/LM01/C02/T1").filterDate("1974-01-01", "1978-12-31") nearInfrared321 = dataset.select(["B6", "B5", "B4"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") elif cod == "LANDSAT/LM01/C02/T2": dataset = ee.ImageCollection("LANDSAT/LM01/C02/T2").filterDate("1974-01-01", "1978-12-31") nearInfrared321 = dataset.select(["B6", "B5", "B4"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") elif cod == "LANDSAT/LM02/C02/T1": dataset = ee.ImageCollection("LANDSAT/LM02/C02/T1").filterDate("1978-01-01", "1980-12-31") nearInfrared321 = dataset.select(["B6", "B5", "B4"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") elif cod == "LANDSAT/LM02/C02/T2": dataset = ee.ImageCollection("LANDSAT/LM02/C02/T2").filterDate("1978-01-01", "1980-12-31") nearInfrared321 = dataset.select(["B6", "B5", "B4"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") elif cod == "LANDSAT/LM03/C02/T1": dataset = ee.ImageCollection("LANDSAT/LM03/C02/T1").filterDate("1978-01-01", "1980-12-31") nearInfrared321 = dataset.select(["B6", "B5", "B4"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") elif cod == "LANDSAT/LM03/C02/T2": dataset = ee.ImageCollection("LANDSAT/LM03/C02/T2").filterDate("1978-01-01", "1980-12-31") nearInfrared321 = dataset.select(["B6", "B5", "B4"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") elif cod == "LANDSAT/LM04/C02/T1": dataset = ee.ImageCollection("LANDSAT/LM04/C02/T1").filterDate("1989-01-01", "1992-12-31") nearInfrared321 = dataset.select(["B3", "B2", "B1"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") elif cod == "LANDSAT/LM04/C02/T2": dataset = ee.ImageCollection("LANDSAT/LM04/C02/T2").filterDate("1989-01-01", "1992-12-31") nearInfrared321 = dataset.select(["B3", "B2", "B1"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") elif cod == "LANDSAT/LM05/C02/T1": dataset = ee.ImageCollection("LANDSAT/LM05/C02/T1").filterDate("1985-01-01", "1989-12-31") nearInfrared321 = dataset.select(["B3", "B2", "B1"]) Map.setCenter(6.746, 46.529, 6) Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") elif cod == "LANDSAT/LM05/C02/T2": dataset = ee.ImageCollection("LANDSAT/LM05/C02/T2").filterDate("1985-01-01", "1989-12-31") nearInfrared321 = dataset.select(["B3", "B2", "B1"]) nearInfrared321Vis = {} Map.setCenter(6.746, 46.529, 6) Map.addLayer(nearInfrared321, nearInfrared321Vis, "Near Infrared (321)") elif cod == "LANDSAT/LT04/C02/T1": dataset = ee.ImageCollection("LANDSAT/LT04/C02/T1").filterDate("1989-01-01", "1992-12-31") trueColor321 = dataset.select(["B3", "B2", "B1"]) trueColor321Vis = {} Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") elif cod == "LANDSAT/LT04/C02/T1_L2": dataset = ee.ImageCollection("LANDSAT/LT04/C02/T1_L2").filterDate("1990-04-01", "1990-05-01") def applyScaleFactors(image): opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) thermalBand = image.select("ST_B6").multiply(0.00341802).add(149.0) return image.addBands(opticalBands, None, True).addBands(thermalBand, None, True) dataset = dataset.map(applyScaleFactors) visualization = { "bands": ["SR_B3", "SR_B2", "SR_B1"], "min": 0.0, "max": 0.3, } Map.setCenter(15, 53, 8) Map.addLayer(dataset, visualization, "True Color (321)") elif cod == "LANDSAT/LT04/C02/T1_TOA": dataset = ee.ImageCollection("LANDSAT/LT04/C02/T1_TOA").filterDate("1989-01-01", "1992-12-31") trueColor321 = dataset.select(["B3", "B2", "B1"]) trueColor321Vis = { "min": 0.0, "max": 0.4, "gamma": 1.2, } Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") elif cod == "LANDSAT/LT04/C02/T2": dataset = ee.ImageCollection("LANDSAT/LT04/C02/T2").filterDate("1989-01-01", "1992-12-31") trueColor321 = dataset.select(["B3", "B2", "B1"]) trueColor321Vis = {} Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") elif cod == "LANDSAT/LT04/C02/T2_L2": dataset = ee.ImageCollection("LANDSAT/LT04/C02/T2_L2").filterDate("1990-04-01", "1990-05-01") def applyScaleFactors(image): opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) thermalBand = image.select("ST_B6").multiply(0.00341802).add(149.0) return image.addBands(opticalBands, None, True).addBands(thermalBand, None, True) dataset = dataset.map(applyScaleFactors) visualization = { "bands": ["SR_B3", "SR_B2", "SR_B1"], "min": 0.0, "max": 0.3, } Map.setCenter(-83, 24, 8) Map.addLayer(dataset, visualization, "True Color (321)") elif cod == "LANDSAT/LT04/C02/T2_TOA": dataset = ee.ImageCollection("LANDSAT/LT04/C02/T2_TOA").filterDate("1989-01-01", "1992-12-31") trueColor321 = dataset.select(["B3", "B2", "B1"]) trueColor321Vis = { "min": 0.0, "max": 0.4, "gamma": 1.2, } Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") elif cod == "LANDSAT/LT05/C02/T1": dataset = ee.ImageCollection("LANDSAT/LT05/C02/T1").filterDate("2011-01-01", "2011-12-31") trueColor321 = dataset.select(["B3", "B2", "B1"]) trueColor321Vis = {} Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") elif cod == "LANDSAT/LT05/C02/T1_L2": dataset = ee.ImageCollection("LANDSAT/LT05/C02/T1_L2").filterDate("2000-06-01", "2000-07-01") def applyScaleFactors(image): opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) thermalBand = image.select("ST_B6").multiply(0.00341802).add(149.0) return image.addBands(opticalBands, None, True).addBands(thermalBand, None, True) dataset = dataset.map(applyScaleFactors) visualization = { "bands": ["SR_B3", "SR_B2", "SR_B1"], "min": 0.0, "max": 0.3, } Map.setCenter(-114.2579, 38.9275, 8) Map.addLayer(dataset, visualization, "True Color (321)") elif cod == "LANDSAT/LT05/C02/T1_TOA": dataset = ee.ImageCollection("LANDSAT/LT05/C02/T1_TOA").filterDate("2011-01-01", "2011-12-31") trueColor321 = dataset.select(["B3", "B2", "B1"]) trueColor321Vis = { "min": 0.0, "max": 0.4, "gamma": 1.2, } Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") elif cod == "LANDSAT/LT05/C02/T2": dataset = ee.ImageCollection("LANDSAT/LT05/C02/T2").filterDate("2011-01-01", "2011-12-31") trueColor321 = dataset.select(["B3", "B2", "B1"]) trueColor321Vis = {} Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") elif cod == "LANDSAT/LT05/C02/T2_L2": dataset = ee.ImageCollection("LANDSAT/LT05/C02/T2_L2").filterDate("2000-06-01", "2000-07-01") def applyScaleFactors(image): opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) thermalBand = image.select("ST_B6").multiply(0.00341802).add(149.0) return image.addBands(opticalBands, None, True).addBands(thermalBand, None, True) dataset = dataset.map(applyScaleFactors) visualization = { "bands": ["SR_B3", "SR_B2", "SR_B1"], "min": 0.0, "max": 0.3, } Map.setCenter(-83, 24, 8) Map.addLayer(dataset, visualization, "True Color (321)") elif cod == "LANDSAT/LT05/C02/T2_TOA": dataset = ee.ImageCollection("LANDSAT/LT05/C02/T2_TOA").filterDate("2011-01-01", "2011-12-31") trueColor321 = dataset.select(["B3", "B2", "B1"]) trueColor321Vis = { "min": 0.0, "max": 0.4, "gamma": 1.2, } Map.setCenter(6.746, 46.529, 6) Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") elif cod == "LANDSAT/MANGROVE_FORESTS": dataset = ee.ImageCollection("LANDSAT/MANGROVE_FORESTS") mangrovesVis = { "min": 0, "max": 1.0, "palette": ["d40115"], } Map.setCenter(-44.5626, -2.0164, 9) Map.addLayer(dataset, mangrovesVis, "Mangroves") elif cod == "LARSE/GEDI/GEDI02_A_002/GEDI02_A_2021244154857_O15413_04_T05622_02_003_02_V002": dataset = ee.FeatureCollection("LARSE/GEDI/GEDI02_A_002/GEDI02_A_2021244154857_O15413_04_T05622_02_003_02_V002") dataset = dataset.style({"color": "black", "pointSize": 1}) Map.setCenter(-64.88, -31.77, 15) Map.addLayer(dataset) elif cod == "LARSE/GEDI/GEDI02_A_002_INDEX": rectangle = ee.Geometry.Rectangle([-111.22, 24.06, -6.54, 51.9]) filter_index = ee.FeatureCollection("LARSE/GEDI/GEDI02_A_002_INDEX").filter("time_start > 2020-10-10T15:57:18Z" & "time_end < 2020-10-11T01:20:45Z").filterBounds(rectangle) Map.addLayer(filter_index) elif cod == "LARSE/GEDI/GEDI02_A_002_MONTHLY": qualityMask = lambda im: im.updateMask(im.select("quality_flag").eq(1)).updateMask(im.select("degrade_flag").eq(0)) dataset = ee.ImageCollection("LARSE/GEDI/GEDI02_A_002_MONTHLY").map(qualityMask).select("rh98") gediVis = { "min": 1, "max": 60, "palette": "darkred,red,orange,green,darkgreen", } Map.setCenter(-74.803466, -9.342209, 10) Map.addLayer(dataset, gediVis, "rh98") elif cod == "LARSE/GEDI/GEDI02_B_002/GEDI02_B_2021043114136_O12295_03_T07619_02_003_01_V002": dataset = ee.FeatureCollection("LARSE/GEDI/GEDI02_B_002/GEDI02_B_2021043114136_O12295_03_T07619_02_003_01_V002") Map.setCenter(12.60033, 51.01051, 14) Map.addLayer(dataset) elif cod == "LARSE/GEDI/GEDI02_B_002_INDEX": rectangle = ee.Geometry.Rectangle([-111.22, 24.06, -6.54, 51.9]) filter_index = ee.FeatureCollection("LARSE/GEDI/GEDI02_B_002_INDEX").filter("time_start > 2020-10-10T15:57:18Z" & "time_end < 2020-10-11T01:20:45Z").filterBounds(rectangle) Map.addLayer(filter_index) elif cod == "LARSE/GEDI/GEDI02_B_002_MONTHLY": qualityMask = lambda im: im.updateMask(im.select("l2b_quality_flag").eq(1)).updateMask(im.select("degrade_flag").eq(0)) dataset = ee.ImageCollection("LARSE/GEDI/GEDI02_B_002_MONTHLY").map(qualityMask).select("solar_elevation") gediVis = { "min": 1, "max": 60, "palette": "red, green, blue", } Map.setCenter(12.60033, 51.01051, 12) Map.addLayer(dataset, gediVis, "Solar Elevation") elif cod == "LARSE/GEDI/GEDI04_A_002/GEDI04_A_2022157233128_O19728_03_T11129_02_003_01_V002": dataset = ee.FeatureCollection("LARSE/GEDI/GEDI04_A_002/GEDI04_A_2022157233128_O19728_03_T11129_02_003_01_V002") Map.setCenter(-94.77616, 38.9587, 14) Map.addLayer(dataset) elif cod == "LARSE/GEDI/GEDI04_A_002_INDEX": rectangle = ee.Geometry.Rectangle([-111.22, 24.06, -6.54, 51.9]) filter_index = ee.FeatureCollection("LARSE/GEDI/GEDI04_A_002_INDEX").filter("time_start > 2020-10-10T15:57:18Z" & "time_end < 2020-10-11T01:20:45Z").filterBounds(rectangle) Map.addLayer(filter_index) elif cod == "LARSE/GEDI/GEDI04_A_002_MONTHLY": qualityMask = lambda im : im.updateMask(im.select("l4_quality_flag").eq(1)).updateMask(im.select("degrade_flag").eq(0)) dataset = ee.ImageCollection("LARSE/GEDI/GEDI04_A_002_MONTHLY").map(qualityMask).select("solar_elevation") gediVis = { "min": 1, "max": 60, "palette": "red, green, blue", } Map.setCenter(5.0198, 51.7564, 12) Map.addLayer(dataset, gediVis, "Solar Elevation") elif cod == "LARSE/GEDI/GEDI04_B_002": l4b = ee.Image("LARSE/GEDI/GEDI04_B_002") Map.addLayer( l4b.select("MU"), {"min": 10, "max": 250, "palette": "440154,414387,2a788e,23a884,7ad151,fde725"}, "Mean Biomass" ) Map.addLayer( l4b.select("SE"), {"min": 10, "max": 50, "palette": "000004,3b0f6f,8c2981,dd4a69,fe9f6d,fcfdbf"}, "Standard Error" ) elif cod == "MERIT/DEM/v1_0_3": dataset = ee.Image("MERIT/DEM/v1_0_3") visualization = { "bands": ["dem"], "min": -3, "max": 18, "palette": ["000000", "478FCD", "86C58E", "AFC35E", "8F7131", "B78D4F", "E2B8A6", "FFFFFF"] } Map.setCenter(90.301, 23.052, 10) Map.addLayer(dataset, visualization, "Elevation") elif cod == "MERIT/Hydro/v1_0_1": dataset = ee.Image("MERIT/Hydro/v1_0_1") visualization = { "bands": ["viswth"], } Map.setCenter(90.301, 23.052, 10) Map.addLayer(dataset, visualization, "River width") elif cod == "MERIT/Hydro_reduced/v1_0_1": dataset = ee.Image("MERIT/Hydro_reduced/v1_0_1") visualization = { "bands": "wth", "min": 0, "max": 400 } Map.setCenter(90.301, 23.052, 10) Map.addLayer(dataset, visualization, "River width") elif cod == "MODIS/006/MCD19A2_GRANULES": collection = ee.ImageCollection("MODIS/006/MCD19A2_GRANULES").select("Optical_Depth_047").filterDate("2019-01-01", "2019-01-15") band_viz = { "min": 0, "max": 500, "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] } Map.addLayer(collection.mean(), band_viz, "Optical Depth 047") Map.setCenter(76, 13, 6) elif cod == "MODIS/006/MOD10A1": dataset = ee.ImageCollection("MODIS/006/MOD10A1").filter(ee.Filter.date("2018-01-01", "2018-05-01")) snowCover = dataset.select("NDSI_Snow_Cover") snowCoverVis = { "min": 0.0, "max": 100.0, "palette": ["black", "0dffff", "0524ff", "ffffff"], } Map.setCenter(-41.13, 76.35, 2) Map.addLayer(snowCover, snowCoverVis, "Snow Cover") elif cod == "MODIS/006/MOD16A2": dataset = ee.ImageCollection("MODIS/006/MOD16A2").filter(ee.Filter.date("2018-01-01", "2018-05-01")) evapotranspiration = dataset.select("ET") evapotranspirationVis = { "min": 0.0, "max": 300.0, "palette": [ "ffffff", "fcd163", "99b718", "66a000", "3e8601", "207401", "056201", "004c00", "011301" ], } Map.setCenter(6.746, 46.529, 2) Map.addLayer(evapotranspiration, evapotranspirationVis, "Evapotranspiration") elif cod == "MODIS/006/MOD17A2H": dataset = ee.ImageCollection("MODIS/006/MOD17A2H").filter(ee.Filter.date("2018-01-01", "2018-05-01")) gpp = dataset.select("Gpp") gppVis = { "min": 0.0, "max": 600.0, "palette": ["bbe029", "0a9501", "074b03"], } Map.setCenter(6.746, 46.529, 2) Map.addLayer(gpp, gppVis, "GPP") elif cod == "MODIS/006/MOD44B": dataset = ee.ImageCollection("MODIS/006/MOD44B") visualization = { "bands": ["Percent_Tree_Cover"], "min": 0.0, "max": 100.0, "palette": ["bbe029", "0a9501", "074b03"] } Map.centerObject(dataset) Map.addLayer(dataset, visualization, "Percent Tree Cover") elif cod == "MODIS/006/MOD44W": dataset = ee.ImageCollection("MODIS/006/MOD44W").filter(ee.Filter.date("2015-01-01", "2015-05-01")) waterMask = dataset.select("water_mask") waterMaskVis = { "min": 0.0, "max": 1.0, "palette": ["bcba99", "2d0491"], } Map.setCenter(6.746, 46.529, 2) Map.addLayer(waterMask, waterMaskVis, "Water Mask") elif cod == "MODIS/006/MOD44W": dataset = ee.ImageCollection("MODIS/006/MOD44W").filter(ee.Filter.date("2015-01-01", "2015-05-01")) waterMask = dataset.select("water_mask") waterMaskVis = { "min": 0.0, "max": 1.0, "palette": ["bcba99", "2d0491"], } Map.setCenter(6.746, 46.529, 2) Map.addLayer(waterMask, waterMaskVis, "Water Mask") elif cod == "MODIS/006/MODOCGA": dataset = ee.ImageCollection("MODIS/006/MODOCGA").filter(ee.Filter.date("2018-01-01", "2018-05-01")) FalseColor = dataset.select(["sur_refl_b11", "sur_refl_b10", "sur_refl_b09"]) FalseColorVis = { "min": 0.0, "max": 2000.0} Map.setCenter(6.746, 46.529, 2) Map.addLayer(FalseColor, FalseColorVis, "False Color") elif cod == "MODIS/006/MYD10A1": dataset = ee.ImageCollection("MODIS/006/MYD10A1").filter(ee.Filter.date("2018-01-01", "2018-05-01")) snowCover = dataset.select("NDSI_Snow_Cover") snowCoverVis = { "min": 0.0, "max": 100.0, "palette": ["black", "0dffff", "0524ff", "ffffff"], } Map.setCenter(-38.13, 40, 2) Map.addLayer(snowCover, snowCoverVis, "Snow Cover") elif cod == "MODIS/006/MYD17A2H": dataset = ee.ImageCollection("MODIS/006/MYD17A2H").filter(ee.Filter.date("2018-01-01", "2018-05-01")) gpp = dataset.select("Gpp") gppVis = { "min": 0.0, "max": 600.0, "palette": ["bbe029", "0a9501", "074b03"], } Map.setCenter(6.746, 46.529, 2) Map.addLayer(gpp, gppVis, "GPP") elif cod == "MODIS/006/MYDOCGA": dataset = ee.ImageCollection("MODIS/006/MYDOCGA").filter(ee.Filter.date("2018-01-01", "2018-05-01")) FalseColor = dataset.select(["sur_refl_b11", "sur_refl_b10", "sur_refl_b09"]) FalseColorVis = { "min": 0.0, "max": 2000.0, } Map.setCenter(6.746, 46.529, 2) Map.addLayer(FalseColor, FalseColorVis, "False Color") elif cod == "MODIS/061/MCD12Q1": dataset = ee.ImageCollection("MODIS/061/MCD12Q1") igbpLandCover = dataset.select("LC_Type1") igbpLandCoverVis = { "min": 1.0, "max": 17.0, "palette": [ "05450a", "086a10", "54a708", "78d203", "009900", "c6b044", "dcd159", "dade48", "fbff13", "b6ff05", "27ff87", "c24f44", "a5a5a5", "ff6d4c", "69fff8", "f9ffa4", "1c0dff" ], } Map.setCenter(6.746, 46.529, 6) Map.addLayer(igbpLandCover, igbpLandCoverVis, "IGBP Land Cover") elif cod == "MODIS/061/MCD12Q2": dataset = ee.ImageCollection("MODIS/061/MCD12Q2").filter(ee.Filter.date("2001-01-01", "2002-01-01")) vegetationPeak = dataset.select("Peak_1") vegetationPeakVis = { "min": 11400, "max": 11868, "palette": ["0f17ff", "b11406", "f1ff23"], } Map.setCenter(6.746, 46.529, 2) Map.addLayer(vegetationPeak, vegetationPeakVis, "Vegetation Peak 2001") elif cod == "MODIS/061/MCD15A3H": dataset = ee.ImageCollection("MODIS/061/MCD15A3H") defaultVisualization = dataset.first().select("Fpar") defaultVisualizationVis = { "min": 0.0, "max": 100.0, "palette": ["e1e4b4", "999d60", "2ec409", "0a4b06"], } Map.setCenter(6.746, 46.529, 6) Map.addLayer( defaultVisualization, defaultVisualizationVis, "Default visualization") elif cod == "MODIS/061/MCD18C2": dataset = ee.ImageCollection("MODIS/061/MCD18C2").filter(ee.Filter.date("2001-01-01", "2001-02-01")) gmt_1200_par = dataset.select("GMT_1200_PAR") gmt_1200_par_vis = { "min": -236, "max": 316, "palette": ["0f17ff", "b11406", "f1ff23"], } Map.setCenter(6.746, 46.529, 2) Map.addLayer(gmt_1200_par, gmt_1200_par_vis,"Total PAR at GMT 12:00") elif cod == "COPERNICUS/CORINE/V20/100m": dataset = ee.Image('COPERNICUS/CORINE/V20/100m/2012') landCover = dataset.select('landcover') Map.setCenter(16.436, 39.825, 6) Map.addLayer(landCover, {}, 'Land Cover') elif cod == "LANDSAT/GLS1975_MOSAIC": dataset = ee.ImageCollection('LANDSAT/GLS1975_MOSAIC') falseColor = dataset.select(['30', '20', '10']) falseColorVis = { "gamma": 1.6, } Map.setCenter(-72.882406,5.181746, 5); Map.addLayer(falseColor, falseColorVis, 'False Color') elif cod == "LANDSAT/LC08/C01/T1_8DAY_BAI": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_8DAY_BAI').filterDate('2017-01-01', '2017-12-31') scaled = dataset.select('BAI') scaledVis = { "min": 0.0, "max": 100.0, } Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(scaled, scaledVis, 'Scaled') elif cod == "LANDSAT/LC08/C01/T1_8DAY_EVI": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_8DAY_EVI').filterDate('2017-01-01', '2017-12-31') colorized = dataset.select('EVI') colorizedVis = { "min": 0.0, "max": 1.0, "palette": [ 'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901', '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01', '012E01', '011D01', '011301'] } Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(colorized, colorizedVis, 'Colorized') elif cod == "LANDSAT/LC08/C01/T1_8DAY_NDSI": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_8DAY_NDSI').filterDate('2017-01-01', '2017-12-31') colorized = dataset.select('NDSI') colorizedVis = { "palette": ['000088', '0000FF', '8888FF', 'FFFFFF'], } Map.setCenter(-72.882406,5.181746, 6); Map.addLayer(colorized, colorizedVis, 'Colorized') elif cod == "LANDSAT/LC08/C01/T1_8DAY_NDVI": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_8DAY_NDVI').filterDate('2017-01-01', '2017-12-31') colorized = dataset.select('NDVI') colorizedVis = { "min": 0.0, "max": 1.0, "palette": [ 'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901', '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01', '012E01', '011D01', '011301']} Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(colorized, colorizedVis, 'Colorized') elif cod == "LANDSAT/LC08/C01/T1_8DAY_NDWI": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_8DAY_NDWI').filterDate('2017-01-01', '2017-12-31') colorized = dataset.select('NDWI') colorizedVis = { "min": 0.0, "max": 1.0, "palette": ['0000ff', '00ffff', 'ffff00', 'ff0000', 'ffffff'], }; Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(colorized, colorizedVis, 'Colorized') elif cod == "LANDSAT/LC08/C01/T1_8DAY_RAW": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_8DAY_RAW').filterDate('2017-01-01', '2017-12-31') visParams = { "min": 0, "max": 20000, "gamma": 1.2, "bands": ['B4', 'B3', 'B2'], } Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(dataset, visParams, 'LANDSAT/LC08/C01/T1_8DAY_RAW') elif cod == "LANDSAT/LC08/C01/T1_8DAY_TOA": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_8DAY_TOA').filterDate('2017-01-01', '2017-12-31') trueColor = dataset.select(['B4', 'B3', 'B2']) trueColorVis = { "min": 0, "max": 0.4, "gamma": 1.2, } Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(trueColor, trueColorVis, 'True Color (432)') elif cod == "LANDSAT/LC08/C01/T1_32DAY_BAI": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_BAI').filterDate('2017-01-01', '2017-12-31') scaled = dataset.select('BAI') scaledVis = { "min": 0.0, "max": 100.0, } Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(scaled, scaledVis, 'Scaled') elif cod == "LANDSAT/LC08/C01/T1_32DAY_EVI": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_EVI').filterDate('2017-01-01', '2017-12-31') colorized = dataset.select('EVI') colorizedVis = { "min": 0.0, "max": 1.0, "palette": [ 'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901', '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01', '012E01', '011D01', '011301'] } Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(colorized, colorizedVis, 'Colorized') elif cod == "LANDSAT/LC08/C01/T1_32DAY_NBRT": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_NBRT').filterDate('2017-01-01', '2017-12-31') colorized = dataset.select('NBRT') colorizedVis = { "min": 0.9, "max": 1.0, "palette": ['000000', 'FFFFFF'], } Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(colorized, colorizedVis, 'Colorized') elif cod == "LANDSAT/LC08/C01/T1_32DAY_NDSI": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_NDSI').filterDate('2017-01-01', '2017-12-31') colorized = dataset.select('NDSI') colorizedVis = { "palette": ['000088', '0000FF', '8888FF', 'FFFFFF'], }; Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(colorized, colorizedVis, 'Colorized') elif cod == "LANDSAT/LC08/C01/T1_32DAY_NDVI": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_NDVI').filterDate('2017-01-01', '2017-12-31') colorized = dataset.select('NDVI') colorizedVis = { "min": 0.0, "max": 1.0, "palette": [ 'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901', '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01', '012E01', '011D01', '011301'] } Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(colorized, colorizedVis, 'Colorized') elif cod == "LANDSAT/LC08/C01/T1_32DAY_NDWI": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_NDWI').filterDate('2017-01-01', '2017-12-31') colorized = dataset.select('NDWI'); colorizedVis = { "min": 0.0, "max": 1.0, "palette": ['0000ff', '00ffff', 'ffff00', 'ff0000', 'ffffff'] } Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(colorized, colorizedVis, 'Colorized') elif cod == "LANDSAT/LC08/C01/T1_32DAY_RAW": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_RAW').filterDate('2017-01-01', '2017-12-31') visParams = { "min": 0, "max": 20000, "gamma": 1.2, "bands": ['B4', 'B3', 'B2'] } Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(dataset, visParams, 'LANDSAT/LC08/C01/T1_32DAY_RAW') elif cod == "LANDSAT/LC08/C01/T1_32DAY_TOA": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_TOA').filterDate('2017-01-01', '2017-12-31') trueColor = dataset.select(['B4', 'B3', 'B2']) trueColorVis = { "min": 0, "max": 0.4, "gamma": 1.2, } Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(trueColor, trueColorVis, 'True Color (432)') elif cod == "LANDSAT/LC08/C01/T1_ANNUAL_BAI": dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_ANNUAL_BAI') \ .filterDate('2017-01-01', '2017-12-31') scaled = dataset.select('BAI') scaledVis = { "min": 0.0, "max": 100.0, } Map.setCenter(-72.882406,5.181746, 6) Map.addLayer(scaled, scaledVis, 'Scaled') elif cod == "NOAA/DMSP-OLS/CALIBRATED_LIGHTS_V4": dataset = ee.ImageCollection('NOAA/DMSP-OLS/CALIBRATED_LIGHTS_V4')\ .filterDate('2010-01-01', '2010-12-31') nighttimeLights = dataset.select('avg_vis') nighttimeLightsVis = { "min": 3.0, "max": 60.0, } Map.setCenter(7.82, 49.1, 4) Map.addLayer(nighttimeLights, nighttimeLightsVis, 'Nighttime Lights') elif cod == "NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG": dataset = ee.ImageCollection('NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG').filterDate('2022-01-01', '2023-12-31') nighttime = dataset.select('avg_rad') nighttimeVis = { "min": 0.0, "max": 60.0, } Map.setCenter(67.1056, 24.8904, 8) Map.addLayer(nighttime, nighttimeVis, 'Nighttime') def get_coordinates(location_name): try: geolocator = Nominatim(user_agent="geoapiExercises") location = geolocator.geocode(location_name, exactly_one=True) if location: return location.latitude, location.longitude else: raise ValueError("Location not found") except Exception as e: raise ValueError(f"Error getting coordinates: {e}") def create_ndvi_time_series(coordinates): try: # Define the area as a buffer around the coordinates center = ee.Geometry.Point(coordinates) drawn_area = center.buffer(10000).bounds() # Buffer of 10 km for example # Initialize the ImageCollection collection = ee.ImageCollection('AAFC/ACI') \ .filterBounds(drawn_area) \ .filterDate('2009-01-01', '2024-12-31') # Extended date range # Check the number of images in the collection count = collection.size().getInfo() st.write(f"Number of images found: {count}") # Debug output if count == 0: st.error("No images found for the specified date range and area.") return px.scatter(title="No NDVI Data Available") # Define a function to calculate NDVI and extract data from each image def extract_data(image): date = ee.Date(image.get('system:time_start')).format('YYYY-MM-dd').getInfo() # Ensure correct band names ndvi = image.normalizedDifference(['B5', 'B4']).rename('NDVI') # Common bands for NDVI data = ndvi.reduceRegion( reducer=ee.Reducer.mean(), geometry=drawn_area, scale=30, maxPixels=1e8, # Increase maxPixels if necessary bestEffort=True ).getInfo() return pd.DataFrame({'Date': [date], 'NDVI': [data.get('NDVI', None)]}) # Map the extraction function over the collection and convert to a DataFrame ndvi_df = pd.DataFrame() image_list = collection.toList(count).getInfo() if not image_list: st.error("Image list is empty. Check your filter parameters.") return px.scatter(title="No NDVI Data Available") for img_info in image_list: img = ee.Image(img_info['id']) img_data = extract_data(img) ndvi_df = pd.concat([ndvi_df, img_data], ignore_index=True) if ndvi_df.empty: st.error("No NDVI data was extracted.") return px.scatter(title="No NDVI Data Available") fig = px.line(ndvi_df, x='Date', y='NDVI', title='NDVI Time Series') return fig except Exception as e: st.error(f"Error creating NDVI time series: {e}") return px.scatter(title="Error") geolocator = Nominatim(user_agent="geoapiExercises") def get_coordinates(location_name): try: geolocator = Nominatim(user_agent="my_geocoder_app") location = geolocator.geocode(location_name, exactly_one=True) if location: return location.latitude, location.longitude else: raise ValueError("Location not found") except Exception as e: raise ValueError(f"Error getting coordinates: {e}") def create_nighttime_lights_time_series(coordinates): try: # Define the area as a buffer around the coordinates center = ee.Geometry.Point(coordinates) drawn_area = center.buffer(10000).bounds() # Buffer of 10 km for example # Initialize the ImageCollection collection = ee.ImageCollection('NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG') \ .filterBounds(drawn_area) \ .filterDate('2021-01-01', '2021-12-31') # Define a function to extract data from each image def extract_data(image): date = ee.Date(image.get('system:time_start')).format('YYYY-MM-dd').getInfo() data = image.reduceRegion( reducer=ee.Reducer.mean(), geometry=drawn_area, scale=500 ).getInfo() return pd.DataFrame({'Date': [date], 'Radiance': [data.get('avg_rad', 0)]}) # Map the extraction function over the collection and convert to a DataFrame radiance_df = pd.DataFrame() image_list = collection.toList(collection.size()).getInfo() for img_info in image_list: img = ee.Image(img_info['id']) img_data = extract_data(img) radiance_df = pd.concat([radiance_df, img_data], ignore_index=True) fig = px.line(radiance_df, x='Date', y='Radiance', title='Nighttime Lights Time Series') return fig except Exception as e: st.error(f"Error creating nighttime lights time series: {e}") return px.scatter(title="Error") # Streamlit application st.sidebar.title("Navigation") pages = { "Home": lambda: st.write("Welcome to the Home Page!"), "About": lambda: st.write("The main purpose is to provide navigation to other pages/maps."), "Interactive Map": lambda: st.write("Use the form below to create your interactive map.") } selection = st.sidebar.radio("Go to", list(pages.keys())) pages[selection]() if selection == "Interactive Map": # Initialize GEE initialize_gee() # Load dataset information dataset_info, _ = data_gee() # Inputs def create_folium_map(selected_dataset): folium_map = geemap.Map(location=[25.5973518, 65.54495724], zoom_start=7) try: type_map(folium_map, selected_dataset) except Exception as e: st.error(f"Error processing dataset: {e}") folium_map_html = folium_map.to_html() return folium_map_html def app(): st.title("Google Earth Engine Maps and Graphs") dataset_info, _ = data_gee() available_datasets = dataset_info['id'].tolist() selected_dataset = st.selectbox( "Select Dataset", ['AAFC/ACI', 'ACA/reef_habitat/v2_0', 'AHN/AHN2_05M_INT', 'AHN/AHN2_05M_NON', 'AHN/AHN2_05M_RUW', 'ASTER/AST_L1T_003', 'AU/GA/AUSTRALIA_5M_DEM', 'NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG',"AU/GA/DEM_1SEC/v10/DEM-H", "AU/GA/DEM_1SEC/v10/DEM-S", "BIOPAMA/GlobalOilPalm/v1", "BLM/AIM/v1/TerrADat/TerrestrialAIM", "BNU/FGS/CCNL/v1", "CAS/IGSNRR/PML/V2_v017", "CGIAR/SRTM90_V4", "CIESIN/GPWv411/GPW_Basic_Demographic_Characteristics", "CIESIN/GPWv411/GPW_Data_Context", "CIESIN/GPWv411/GPW_Land_Area", "CIESIN/GPWv411/GPW_Mean_Administrative_Unit_Area", "CIESIN/GPWv411/GPW_National_Identifier_Grid", "CIESIN/GPWv411/GPW_Population_Count", "CIESIN/GPWv411/GPW_Population_Density", "CIESIN/GPWv411/GPW_UNWPP-Adjusted_Population_Count", "CIESIN/GPWv411/GPW_UNWPP-Adjusted_Population_Density", "CIESIN/GPWv411/GPW_Water_Area", "CIESIN/GPWv411/GPW_Water_Mask", "COPERNICUS/CORINE/V20/100m/2012", "COPERNICUS/DEM/GLO30", "COPERNICUS/Landcover/100m/Proba-V-C3/Global", "COPERNICUS/S1_GRD" 'AAFC/ACI', 'ACA/reef_habitat/v2_0', 'AHN/AHN2_05M_INT', 'AHN/AHN2_05M_NON', 'AHN/AHN2_05M_RUW', 'ASTER/AST_L1T_003', 'AU/GA/AUSTRALIA_5M_DEM', 'NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG', 'AU/GA/DEM_1SEC/v10/DEM-H', 'AU/GA/DEM_1SEC/v10/DEM-S', 'BIOPAMA/GlobalOilPalm/v1', 'BLM/AIM/v1/TerrADat/TerrestrialAIM', 'BNU/FGS/CCNL/v1', 'CAS/IGSNRR/PML/V2_v017', 'CGIAR/SRTM90_V4', 'CIESIN/GPWv411/GPW_Basic_Demographic_Characteristics', 'CIESIN/GPWv411/GPW_Data_Context', 'CIESIN/GPWv411/GPW_Land_Area', 'CIESIN/GPWv411/GPW_Mean_Administrative_Unit_Area', 'CIESIN/GPWv411/GPW_National_Identifier_Grid', 'CIESIN/GPWv411/GPW_Population_Count', 'CIESIN/GPWv411/GPW_Population_Density', 'CIESIN/GPWv411/GPW_UNWPP-Adjusted_Population_Count', 'CIESIN/GPWv411/GPW_UNWPP-Adjusted_Population_Density', 'CIESIN/GPWv411/GPW_Water_Area', 'CIESIN/GPWv411/GPW_Water_Mask', 'COPERNICUS/CORINE/V20/100m/2012', 'COPERNICUS/DEM/GLO30', 'COPERNICUS/Landcover/100m/Proba-V-C3/Global', 'COPERNICUS/S1_GRD', 'COPERNICUS/S2', 'COPERNICUS/S2_CLOUD_PROBABILITY', 'COPERNICUS/S2_HARMONIZED', 'COPERNICUS/S2_SR', 'COPERNICUS/S2_SR_HARMONIZED', 'COPERNICUS/S3/OLCI', 'COPERNICUS/S5P/NRTI/L3_AER_AI', 'COPERNICUS/S5P/NRTI/L3_AER_LH', 'COPERNICUS/S5P/NRTI/L3_CLOUD', 'COPERNICUS/S5P/NRTI/L3_CO', 'COPERNICUS/S5P/NRTI/L3_HCHO', 'COPERNICUS/S5P/NRTI/L3_NO2', 'COPERNICUS/S5P/NRTI/L3_O3', 'COPERNICUS/S5P/NRTI/L3_SO2', 'COPERNICUS/S5P/OFFL/L3_AER_AI', 'COPERNICUS/S5P/OFFL/L3_AER_LH', 'COPERNICUS/S5P/OFFL/L3_CH4', 'COPERNICUS/S5P/OFFL/L3_CLOUD', 'COPERNICUS/S5P/OFFL/L3_CO', 'COPERNICUS/S5P/OFFL/L3_HCHO', 'COPERNICUS/S5P/OFFL/L3_NO2', 'COPERNICUS/S5P/OFFL/L3_O3', 'COPERNICUS/S5P/OFFL/L3_O3_TCL', 'COPERNICUS/S5P/OFFL/L3_SO2', 'CPOM/CryoSat2/ANTARCTICA_DEM', 'CSIRO/SLGA', 'CSP/ERGo/1_0/Global/ALOS_CHILI', 'CSP/ERGo/1_0/Global/ALOS_landforms', 'CSP/ERGo/1_0/Global/ALOS_mTPI', 'CSP/ERGo/1_0/Global/ALOS_topoDiversity', 'CSP/ERGo/1_0/Global/SRTM_CHILI', 'CSP/ERGo/1_0/Global/SRTM_landforms', 'CSP/ERGo/1_0/Global/SRTM_mTPI', 'CSP/ERGo/1_0/Global/SRTM_topoDiversity', 'CSP/ERGo/1_0/US/CHILI', 'CSP/ERGo/1_0/US/landforms', 'CSP/ERGo/1_0/US/lithology', 'CSP/ERGo/1_0/US/mTPI', 'CSP/ERGo/1_0/US/physioDiversity', 'CSP/ERGo/1_0/US/physiography', 'CSP/ERGo/1_0/US/topoDiversity', 'CSP/HM/GlobalHumanModification', 'DLR/WSF/WSF2015/v1', 'DOE/ORNL/LandScan_HD/Ukraine_202201', 'ECMWF/CAMS/NRT', 'ECMWF/ERA5/DAILY', 'ECMWF/ERA5/MONTHLY', 'ECMWF/ERA5_LAND/DAILY_RAW', 'ECMWF/ERA5_LAND/HOURLY', 'ECMWF/ERA5_LAND/MONTHLY_AGGR', 'ECMWF/ERA5_LAND/MONTHLY_BY_HOUR', 'EO1/HYPERION', 'EPA/Ecoregions/2013/L3', 'EPA/Ecoregions/2013/L4', 'ESA/CCI/FireCCI/5_1', 'ESA/GLOBCOVER_L4_200901_200912_V2_3', 'ESA/WorldCover/v100', 'ESA/WorldCover/v200', 'FAO/GAUL/2015/level0', 'FAO/GAUL/2015/level1', 'FAO/GAUL/2015/level2', 'FAO/GAUL_SIMPLIFIED_500m/2015/level0', 'FAO/GAUL_SIMPLIFIED_500m/2015/level1', 'FAO/GAUL_SIMPLIFIED_500m/2015/level2', 'FAO/GHG/1/DROSA_A', 'FAO/GHG/1/DROSE_A', 'FAO/SOFO/1/FPP', 'FAO/SOFO/1/TPP', 'FAO/WAPOR/2/L1_AETI_D', 'FAO/WAPOR/2/L1_E_D', 'FAO/WAPOR/2/L1_I_D', 'FAO/WAPOR/2/L1_NPP_D', 'FAO/WAPOR/2/L1_RET_D', 'FAO/WAPOR/2/L1_RET_E', 'FAO/WAPOR/2/L1_T_D', 'FIRMS', 'Finland/MAVI/VV/50cm', 'GFW/GFF/V1/fishing_hours', 'GFW/GFF/V1/vessel_hours', 'GLCF/GLS_WATER', 'GLIMS/20210914', 'Finland/SMK/VV/50cm', 'Finland/SMK/V/50cm', 'GLIMS/current', 'GLOBAL_FLOOD_DB/MODIS_EVENTS/V1', 'GOOGLE/DYNAMICWORLD/V1', 'GOOGLE/Research/open-buildings/v2/polygons', 'GRIDMET/DROUGHT', 'Germany/Brandenburg/orthos/20cm', 'HYCOM/sea_surface_elevation', 'HYCOM/sea_temp_salinity', 'HYCOM/sea_water_velocity', 'IDAHO_EPSCOR/GRIDMET', 'IDAHO_EPSCOR/MACAv2_METDATA', 'IDAHO_EPSCOR/MACAv2_METDATA_MONTHLY', 'IDAHO_EPSCOR/TERRACLIMATE','NOAA/DMSP-OLS/CALIBRATED_LIGHTS_V4','NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG'] ) map_html = create_folium_map(selected_dataset) st.components.v1.html(map_html, height=600, width=800) area_option = st.sidebar.selectbox("Choose Area Definition Method", ["Draw on Map", "Upload GeoJSON"]) drawn_area = None if area_option == "Draw on Map": st.sidebar.text("Draw a rectangle on the map to define the area.") elif area_option == "Upload GeoJSON": uploaded_file = st.file_uploader("Upload GeoJSON file", type="geojson") if uploaded_file: geojson_data = json.load(uploaded_file) drawn_area = geojson_data st.title('Nighttime Lights Time Series') # Input for location name location_name = st.text_input("Enter a location (e.g., Karachi, New York)") if location_name: try: # Get coordinates for the location coordinates = get_coordinates(location_name) # Generate the graph fig = create_nighttime_lights_time_series(coordinates) st.plotly_chart(fig) except Exception as e: st.error(f"Error processing location data: {e}") st.title('NDVI Time Series') # Input for location name with unique key location_name = st.text_input("Enter a location (e.g., Karachi, New York)", key="location_input") if location_name: try: # Get coordinates for the location coordinates = get_coordinates(location_name) # Generate the NDVI graph fig = create_ndvi_time_series(coordinates) st.plotly_chart(fig) except Exception as e: st.error(f"Error processing location data: {e}") if __name__ == "__main__": app()