diff --git "a/y_gee_gee.py" "b/y_gee_gee.py" new file mode 100644--- /dev/null +++ "b/y_gee_gee.py" @@ -0,0 +1,4402 @@ +import ee +import os +import pandas as pd + +def data_gee(): + file = (os.path.dirname(os.path.abspath(__file__)) + '/data_gee/gee_catalog.csv') + data = pd.read_csv(file) + delete = [] + for i in range(len(data)): + d = data['title'].iloc[i] + f = d.find('deprecated') + if f != -1: + delete.append(i) + + data = data.drop(delete, axis=0).reset_index(drop=True) + f = data[['id', 'title']] + return(f, data) + +def type_map(Map, cod): + if cod == 'AAFC/ACI': + dataset = ee.ImageCollection('AAFC/ACI') + crop2016 = dataset.filter(ee.Filter.date('2016-01-01', '2016-12-31')).first() + Map.setCenter(-103.8881, 53.0371, 10) + Map.addLayer(crop2016) + + elif cod == 'ACA/reef_habitat/v2_0': + dataset = ee.Image('ACA/reef_habitat/v2_0') + reefExtent = dataset.select('reef_mask').selfMask() + geomorphicZonation = dataset.select('geomorphic').selfMask() + benthicHabitat = dataset.select('benthic').selfMask() + Map.setCenter(-149.56194, -17.00872, 13); + Map.setOptions('SATELLITE') + Map.addLayer(reefExtent, {}, 'Global reef extent') + Map.addLayer(geomorphicZonation, {}, 'Geomorphic zonation') + Map.addLayer(benthicHabitat, {}, 'Benthic habitat') + + elif cod == 'AHN/AHN2_05M_INT': + dataset = ee.Image('AHN/AHN2_05M_INT') + elevation = dataset.select('elevation') + elevationVis = {'min': -5.0,'max': 30.0} + Map.setCenter(5.76583, 51.855276, 16) + Map.addLayer(elevation, elevationVis, 'Elevation') + + elif cod == 'AHN/AHN2_05M_NON': + dataset = ee.Image('AHN/AHN2_05M_NON') + elevation = dataset.select('elevation') + elevationVis = { + 'min': -5.0, + 'max': 30.0 + } + Map.setCenter(5.80258, 51.78547, 14) + Map.addLayer(elevation, elevationVis, 'Elevation') + + elif cod == 'AHN/AHN2_05M_RUW': + dataset = ee.Image('AHN/AHN2_05M_RUW') + elevation = dataset.select('elevation') + elevationVis = { + 'min': -5.0, + 'max': 30.0 + } + Map.setCenter(5.76583, 51.855276, 16) + Map.addLayer(elevation, elevationVis, 'Elevation') + + elif cod == 'ASTER/AST_L1T_003': + dataset = ee.ImageCollection('ASTER/AST_L1T_003').filter(ee.Filter.date('2018-01-01', '2018-08-15')) + falseColor = dataset.select(['B3N', 'B02', 'B01']) + falseColorVis = { + 'min': 0.0, + 'max': 255.0, + } + Map.setCenter(-122.0272, 39.6734, 11) + Map.addLayer(falseColor.median(), falseColorVis, 'False Color') + + elif cod == 'AU/GA/AUSTRALIA_5M_DEM': + dataset = ee.ImageCollection('AU/GA/AUSTRALIA_5M_DEM') + elevation = dataset.select('elevation') + elevationVis = { + 'min': 0.0, + 'max': 150.0, + 'palette': ['0000ff', '00ffff', 'ffff00', 'ff0000', 'ffffff'] + } + Map.setCenter(140.1883, -35.9113, 8) + Map.addLayer(elevation, elevationVis, 'Elevation') + + elif cod == 'AU/GA/DEM_1SEC/v10/DEM-H': + dataset = ee.Image('AU/GA/DEM_1SEC/v10/DEM-H') + elevation = dataset.select('elevation') + elevationVis = { + 'min': -10.0, + 'max': 1300.0, + 'palette': [ + '3ae237', 'b5e22e', 'd6e21f', 'fff705', 'ffd611', 'ffb613', 'ff8b13', + 'ff6e08', 'ff500d', 'ff0000', 'de0101', 'c21301', '0602ff', '235cb1', + '307ef3', '269db1', '30c8e2', '32d3ef', '3be285', '3ff38f', '86e26f' + ], + } + Map.setCenter(133.95, -24.69, 5) + Map.addLayer(elevation, elevationVis, 'Elevation') + + elif cod == 'AU/GA/DEM_1SEC/v10/DEM-S': + dataset = ee.Image('AU/GA/DEM_1SEC/v10/DEM-S') + elevation = dataset.select('elevation') + elevationVis = { + 'min': -10.0, + 'max': 1300.0, + 'palette': [ + '3ae237', 'b5e22e', 'd6e21f', 'fff705', 'ffd611', 'ffb613', 'ff8b13', + 'ff6e08', 'ff500d', 'ff0000', 'de0101', 'c21301', '0602ff', '235cb1', + '307ef3', '269db1', '30c8e2', '32d3ef', '3be285', '3ff38f', '86e26f' + ], + } + Map.setCenter(133.95, -24.69, 5) + Map.addLayer(elevation, elevationVis, 'Elevation') + + elif cod == 'BIOPAMA/GlobalOilPalm/v1': + dataset = ee.ImageCollection('BIOPAMA/GlobalOilPalm/v1') + opClass = dataset.select('classification') + mosaic = opClass.mosaic() + classificationVis = { + 'min': 1, + 'max': 3, + 'palette': ['ff0000','ef00ff', '696969'] + } + mask = mosaic.neq(3) + mask = mask.where(mask.eq(0), 0.6) + + Map.addLayer(mosaic.updateMask(mask), classificationVis, 'Oil palm plantation type', True) + Map.setCenter(-73.628998,7.320244,8) + + elif cod == "BLM/AIM/v1/TerrADat/TerrestrialAIM": + greens = ee.List(["#00441B", "#00682A", "#37A055", "#5DB96B", "#AEDEA7", "#E7F6E2", "#F7FCF5"]) + reds = ee.List(["#67000D", "#9E0D14", "#E32F27", "#F6553D", "#FCA082", "#FEE2D5", "#FFF5F0"]) + + def normalize(value, min, max): + return value.subtract(min).divide(ee.Number(max).subtract(min)) + + def setColor(feature, property, min, max, palette): + value = normalize(feature.getNumber(property), min, max).multiply(palette.size()).min(palette.size().subtract(1)).max(0) + return feature.set({"style": {"color": palette.get(value.int())}}) + + fc = ee.FeatureCollection("BLM/AIM/v1/TerrADat/TerrestrialAIM") + woodyHeightStyle = lambda f:setColor(f, "WoodyHgt_Avg", 0, 100, greens) + bareSoilStyle = lambda f: setColor(f, "BareSoilCover_FH", 0, 100, reds) + + treeHeight = fc.filter("WoodyHgt_Avg > 1").map(woodyHeightStyle) + bareSoil = fc.filter("BareSoilCover_FH > 1").map(bareSoilStyle) + Map.addLayer(bareSoil.style({"styleProperty": "style", "pointSize": 3})) + Map.addLayer(treeHeight.style({"styleProperty": "style", "pointSize": 1})) + Map.setCenter(-110, 40, 6) + + elif cod == "BNU/FGS/CCNL/v1": + dataset = ee.ImageCollection("BNU/FGS/CCNL/v1").filter(ee.Filter.date("2010-01-01", "2010-12-31")) + nighttimeLights = dataset.select("b1") + nighttimeLightsVis = { + "min": 3.0, + "max": 60.0, + } + Map.setCenter(31.4, 30, 6) + Map.addLayer(nighttimeLights, nighttimeLightsVis, "Nighttime Lights") + + elif cod == "CAS/IGSNRR/PML/V2_v017": + dataset = ee.ImageCollection("CAS/IGSNRR/PML/V2_v017") + visualization = { + 'bands': ["GPP"], + "min": 0.0, + "max": 9.0, + "palette": ["a50026", "d73027", "f46d43", "fdae61", "fee08b", "ffffbf", + "d9ef8b", "a6d96a", "66bd63", "1a9850", "006837"]} + Map.setCenter(0.0, 15.0, 2) + Map.addLayer(dataset, visualization, "PML_V2 0.1.7 Gross Primary Product (GPP)") + + elif cod == "CGIAR/SRTM90_V4": + dataset = ee.Image("CGIAR/SRTM90_V4") + elevation = dataset.select("elevation") + slope = ee.Terrain.slope(elevation) + Map.setCenter(-112.8598, 36.2841, 10) + Map.addLayer(slope, {"min": 0, "max": 60}, "slope") + + elif cod == "CIESIN/GPWv411/GPW_Basic_Demographic_Characteristics": + dataset = ee.ImageCollection("CIESIN/GPWv411/GPW_Basic_Demographic_Characteristics").first() + raster = dataset.select("basic_demographic_characteristics") + raster_vis = { + "max": 1000.0, + "palette": ["ffffe7","86a192","509791","307296","2c4484","000066"], + "min": 0.0 + } + Map.setCenter(79.1, 19.81, 3) + Map.addLayer(raster, raster_vis, "basic_demographic_characteristics") + + elif cod == "CIESIN/GPWv411/GPW_Data_Context": + dataset = ee.Image("CIESIN/GPWv411/GPW_Data_Context") + raster = dataset.select("data_context") + raster_vis = { + "min": 200.0, + "palette": ["ffffff","099506","f04923","e62440","706984","a5a5a5","ffe152","d4cc11","000000"], + "max": 207.0 + } + Map.setCenter(-88.6, 26.4, 1) + Map.addLayer(raster, raster_vis, "data_context") + + elif cod == "CIESIN/GPWv411/GPW_Land_Area": + dataset = ee.Image("CIESIN/GPWv411/GPW_Land_Area") + raster = dataset.select("land_area") + raster_vis = { + "min": 0.0, + "palette": ["ecefb7","745638"], + "max": 0.86 + } + Map.setCenter(26.4, 19.81, 1) + Map.addLayer(raster, raster_vis, "land_area") + + elif cod == "CIESIN/GPWv411/GPW_Mean_Administrative_Unit_Area": + dataset = ee.Image("CIESIN/GPWv411/GPW_Mean_Administrative_Unit_Area") + raster = dataset.select("mean_administrative_unit_area") + raster_vis = { + "min": 0.0, + "palette": ["ffffff","747474","656565","3c3c3c","2f2f2f","000000"], + "max": 40000.0 + } + Map.setCenter(-88.6, 26.4, 1) + Map.addLayer(raster, raster_vis, "mean_administrative_unit_area") + + elif cod == "CIESIN/GPWv411/GPW_National_Identifier_Grid": + dataset = ee.Image("CIESIN/GPWv411/GPW_National_Identifier_Grid") + raster = dataset.select("national_identifier_grid") + raster_vis = { + "min": 4.0, + "palette": ["000000","ffffff"], + "max": 999.0 + } + Map.setCenter(-88.6, 26.4, 1) + Map.addLayer(raster, raster_vis, "national_identifier_grid") + + elif cod == "CIESIN/GPWv411/GPW_Population_Count": + dataset = ee.ImageCollection("CIESIN/GPWv411/GPW_Population_Count").first() + raster = dataset.select("population_count") + raster_vis = { + "max": 1000.0, + "palette": ["ffffe7","86a192","509791","307296","2c4484","000066"], + "min": 0.0} + Map.setCenter(79.1, 19.81, 3) + Map.addLayer(raster, raster_vis, "population_count") + + elif cod == "CIESIN/GPWv411/GPW_Population_Density": + dataset = ee.ImageCollection("CIESIN/GPWv411/GPW_Population_Density").first() + raster = dataset.select("population_density") + raster_vis = { + "max": 1000.0, + "palette": ["ffffe7","FFc869","ffac1d","e17735","f2552c","9f0c21"], + "min": 200.0 + } + Map.setCenter(79.1, 19.81, 3) + Map.addLayer(raster, raster_vis, "population_density") + + elif cod == "CIESIN/GPWv411/GPW_UNWPP-Adjusted_Population_Count": + dataset = ee.ImageCollection("CIESIN/GPWv411/GPW_UNWPP-Adjusted_Population_Count").first() + raster = dataset.select("unwpp-adjusted_population_count") + raster_vis = {"max": 1000.0, "palette": ["ffffe7","86a192","509791","307296","2c4484","000066"], "min": 0.0} + Map.setCenter(79.1, 19.81, 3) + Map.addLayer(raster, raster_vis, "unwpp-adjusted_population_count") + + elif cod == "CIESIN/GPWv411/GPW_UNWPP-Adjusted_Population_Density": + dataset = ee.ImageCollection("CIESIN/GPWv411/GPW_UNWPP-Adjusted_Population_Density").first() + raster = dataset.select("unwpp-adjusted_population_density") + raster_vis = {"max": 1000.0, "palette": ["ffffe7","FFc869","ffac1d","e17735","f2552c","9f0c21"], "min": 0.0} + Map.setCenter(79.1, 19.81, 3) + Map.addLayer(raster, raster_vis, "unwpp-adjusted_population_density") + + elif cod == "CIESIN/GPWv411/GPW_Water_Area": + dataset = ee.Image("CIESIN/GPWv411/GPW_Water_Area") + raster = dataset.select("water_area") + raster_vis = { + "min": 0.0, + "palette": ["f5f6da","180d02"], + "max": 0.860558} + Map.setCenter(79.1, 19.81, 3) + Map.addLayer(raster, raster_vis, "water_area") + + elif cod == "CIESIN/GPWv411/GPW_Water_Mask": + dataset = ee.Image("CIESIN/GPWv411/GPW_Water_Mask") + raster = dataset.select("water_mask") + raster_vis = { + "min": 0.0, + "palette": ["005ce6","00ffc5","bed2ff","aed0f1"], + "max": 3.0 + } + Map.setCenter(-88.6, 26.4, 1) + Map.addLayer(raster, raster_vis, "water_mask") + + elif cod == "COPERNICUS/CORINE/V20/100m/2012": + dataset = ee.Image("COPERNICUS/CORINE/V20/100m/2012") + landCover = dataset.select("landcover") + Map.setCenter(16.436, 39.825, 6) + Map.addLayer(landCover, {}, "Land Cover") + + + elif cod == "COPERNICUS/DEM/GLO30": + dataset = ee.ImageCollection("COPERNICUS/DEM/GLO30") + elevation = dataset.select("DEM") + elevationVis = { + "min": 0.0, + "max": 1000.0, + 'palette': ["0000ff","00ffff","ffff00","ff0000","ffffff"], + } + Map.setCenter(-73.388672,5.353521, 4) + Map.addLayer(elevation, elevationVis, "DEM") + + elif cod == "COPERNICUS/Landcover/100m/Proba-V-C3/Global": + dataset = ee.Image("COPERNICUS/Landcover/100m/Proba-V-C3/Global/2019").select("discrete_classification") + Map.setCenter(-88.6, 26.4, 1) + Map.addLayer(dataset, {}, "Land Cover") + + elif cod == "COPERNICUS/S1_GRD": + def ff(image): + edge = image.lt(-30.0) + maskedImage = image.mask() + maskedImage = maskedImage.And(edge.Not()) + return image.updateMask(maskedImage) + + imgVV = ee.ImageCollection("COPERNICUS/S1_GRD") \ + .filter(ee.Filter.listContains("transmitterReceiverPolarisation", "VV")) \ + .filter(ee.Filter.eq("instrumentMode", "IW")) \ + .select("VV") \ + .map(lambda x:ff(x)) + + desc = imgVV.filter(ee.Filter.eq("orbitProperties_pass", "DESCENDING")) + asc = imgVV.filter(ee.Filter.eq("orbitProperties_pass", "ASCENDING")) + + spring = ee.Filter.date("2015-03-01", "2015-04-20") + lateSpring = ee.Filter.date("2015-04-21", "2015-06-10") + summer = ee.Filter.date("2015-06-11", "2015-08-31") + + descChange = ee.Image.cat(desc.filter(spring).mean(),desc.filter(lateSpring).mean(),desc.filter(summer).mean()) + ascChange = ee.Image.cat(asc.filter(spring).mean(),asc.filter(lateSpring).mean(),asc.filter(summer).mean()) + Map.setCenter(-73.388672,5.353521, 6) + Map.addLayer(ascChange, {"min": -25, "max": 5}, "Multi-T Mean ASC", True) + Map.addLayer(descChange, {"min": -25, "max": 5}, "Multi-T Mean DESC", True) + + elif cod == "COPERNICUS/S2": + def maskS2clouds(image): + qa = image.select("QA60") + cloudBitMask = 1 << 10 + cirrusBitMask = 1 << 11 + mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(qa.bitwiseAnd(cirrusBitMask).eq(0)) + return image.updateMask(mask).divide(10000) + + dataset = ee.ImageCollection("COPERNICUS/S2").filterDate("2018-01-01", "2018-01-31").filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", 20)).map(maskS2clouds) + rgbVis = {"min": 0.0, "max": 0.3,"bands": ["B4", "B3", "B2"] + } + Map.setCenter(-73.388672,5.353521, 6) + Map.addLayer(dataset.median(), rgbVis, "RGB") + + elif cod == "COPERNICUS/S2_CLOUD_PROBABILITY": + s2Sr = ee.ImageCollection("COPERNICUS/S2_SR") + s2Clouds = ee.ImageCollection("COPERNICUS/S2_CLOUD_PROBABILITY") + START_DATE = ee.Date("2019-01-01") + END_DATE = ee.Date("2019-03-01") + MAX_CLOUD_PROBABILITY = 65 + region = ee.Geometry.Rectangle([[-76.5, 2.0], [-74, 4.0]]) + Map.setCenter(-75, 3, 12) + + def maskClouds(img): + clouds = ee.Image(img.get("cloud_mask")).select("probability") + isNotCloud = clouds.lt(MAX_CLOUD_PROBABILITY) + return img.updateMask(isNotCloud) + + def maskEdges(s2_img): + return s2_img.updateMask(s2_img.select("B8A").mask().updateMask(s2_img.select("B9").mask())) + + criteria = ee.Filter.And(ee.Filter.bounds(region), ee.Filter.date(START_DATE, END_DATE)) + s2Sr = s2Sr.filter(criteria).map(maskEdges) + s2Clouds = s2Clouds.filter(criteria) + + s2SrWithCloudMask = ee.Join.saveFirst("cloud_mask").apply({ + 'primary': s2Sr, + 'secondary': s2Clouds, + 'condition': ee.Filter.equals(leftField= "system:index", rightField= "system:index") + }) + + s2CloudMasked = ee.ImageCollection(s2SrWithCloudMask).map(maskClouds).median() + rgbVis = {"min": 0, "max": 3000, "bands": ["B4", "B3", "B2"]} + + Map.addLayer(s2CloudMasked, rgbVis, "S2 SR masked at " + MAX_CLOUD_PROBABILITY + "%", True) + + elif cod == "COPERNICUS/S2_HARMONIZED": + def maskS2clouds(image): + qa = image.select("QA60") + cloudBitMask = 1 << 10 + cirrusBitMask = 1 << 11 + mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(qa.bitwiseAnd(cirrusBitMask).eq(0)) + return image.updateMask(mask).divide(10000) + + dataset = ee.ImageCollection("COPERNICUS/S2_HARMONIZED") \ + .filterDate("2022-01-01", "2022-01-31") \ + .filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", 20)) \ + .map(maskS2clouds) + rgbVis = { + "min": 0.0, + "max": 0.3, + "bands": ["B4", "B3", "B2"], + } + + Map.setCenter(-73.388672,5.353521, 6) + Map.addLayer(dataset.median(), rgbVis, "RGB") + + elif cod == "COPERNICUS/S2_SR": + def maskS2clouds(image): + qa = image.select("QA60") + cloudBitMask = 1 << 10 + cirrusBitMask = 1 << 11 + mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(qa.bitwiseAnd(cirrusBitMask).eq(0)) + return image.updateMask(mask).divide(10000) + dataset = ee.ImageCollection("COPERNICUS/S2_SR") \ + .filterDate("2020-01-01", "2020-01-30") \ + .filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE",20)) \ + .map(maskS2clouds) + visualization = { + "min": 0.0, + "max": 0.3, + 'bands': ["B4", "B3", "B2"], + } + Map.setCenter(83.277, 17.7009, 12) + Map.addLayer(dataset.mean(), visualization, "RGB") + + + elif cod == "COPERNICUS/S2_SR_HARMONIZED": + def maskS2clouds(image): + qa = image.select("QA60") + cloudBitMask = 1 << 10 + cirrusBitMask = 1 << 11 + mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(qa.bitwiseAnd(cirrusBitMask).eq(0)) + return image.updateMask(mask).divide(10000) + dataset = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED") \ + .filterDate("2020-01-01", "2020-01-30") \ + .filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE",20)) \ + .map(maskS2clouds) + visualization = { + "min": 0.0, + "max": 0.3, + "bands": ["B4", "B3", "B2"], + } + Map.setCenter(83.277, 17.7009, 12) + Map.addLayer(dataset.mean(), visualization, "RGB") + + elif cod == "COPERNICUS/S3/OLCI": + dataset = ee.ImageCollection("COPERNICUS/S3/OLCI") \ + .filterDate("2018-04-01", "2018-04-04") + rgb = dataset.select(["Oa08_radiance", "Oa06_radiance", "Oa04_radiance"]) \ + .median().multiply(ee.Image([0.00876539, 0.0123538, 0.0115198])) + visParams = {"min": 0, "max": 6, "gamma": 1.5,} + Map.setCenter(46.043, 1.45, 5) + Map.addLayer(rgb, visParams, "RGB") + + elif cod == "COPERNICUS/S5P/NRTI/L3_AER_AI": + collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_AER_AI") \ + .select("absorbing_aerosol_index") \ + .filterDate("2019-06-01", "2019-06-06") + band_viz = { + "min": -1, + "max": 2.0, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P Aerosol") + Map.setCenter(-118.82, 36.1, 5) + + elif cod == "COPERNICUS/S5P/NRTI/L3_AER_LH": + collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_AER_LH") \ + .select("aerosol_height") \ + .filterDate("2019-06-01", "2019-06-06") + band_viz = { + "min": -81.17, + "max": 67622.56, + "palette": ["blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P Aerosol Height") + Map.setCenter(44.09, 24.27, 4) + + elif cod == "COPERNICUS/S5P/NRTI/L3_CLOUD": + collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_CLOUD") \ + .select("cloud_fraction") \ + .filterDate("2019-06-01", "2019-06-02") + band_viz = { + "min": 0, + "max": 0.95, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P Cloud") + Map.setCenter(-58.14, -10.47, 2) + + elif cod == "COPERNICUS/S5P/NRTI/L3_CO": + collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_CO") \ + .select("CO_column_number_density") \ + .filterDate("2019-06-01", "2019-06-11") + band_viz = { + "min": 0, + "max": 0.05, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P CO") + Map.setCenter(-25.01, -4.28, 4) + + elif cod == "COPERNICUS/S5P/NRTI/L3_HCHO": + collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_HCHO") \ + .select("tropospheric_HCHO_column_number_density") \ + .filterDate("2019-06-01", "2019-06-06") + band_viz = { + "min": 0.0, + "max": 0.0003, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P HCHO") + Map.setCenter(0.0, 0.0, 2) + + elif cod == "COPERNICUS/S5P/NRTI/L3_NO2": + collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_NO2") \ + .select("NO2_column_number_density") \ + .filterDate("2019-06-01", "2019-06-06") + band_viz = { + "min": 0, + "max": 0.0002, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P N02") + Map.setCenter(65.27, 24.11, 4) + + elif cod == "COPERNICUS/S5P/NRTI/L3_O3": + collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_O3") \ + .select("O3_column_number_density") \ + .filterDate("2019-06-01", "2019-06-05") + band_viz = { + "min": 0.12, + "max": 0.15, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P O3") + Map.setCenter(0.0, 0.0, 2) + + elif cod == "COPERNICUS/S5P/NRTI/L3_SO2": + collection = ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_SO2") \ + .select("SO2_column_number_density") \ + .filterDate("2019-06-01", "2019-06-11") + band_viz = { + "min": 0.0, + "max": 0.0005, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P SO2") + Map.setCenter(0.0, 0.0, 2) + + elif cod == "COPERNICUS/S5P/OFFL/L3_AER_AI": + collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_AER_AI") \ + .select("absorbing_aerosol_index") \ + .filterDate("2019-06-01", "2019-06-06") + band_viz = { + "min": -1, + "max": 2.0, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P Aerosol") + Map.setCenter(-118.82, 36.1, 5) + + elif cod == "COPERNICUS/S5P/OFFL/L3_AER_LH": + collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_AER_LH") \ + .select("aerosol_height") \ + .filterDate("2019-06-01", "2019-06-05") + visualization = { + "min": 0, + "max": 6000, + "palette": ["blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.setCenter(44.09, 24.27, 4) + Map.addLayer(collection.mean(), visualization, "S5P Aerosol Height") + + elif cod == "COPERNICUS/S5P/OFFL/L3_CH4": + collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_CH4") \ + .select("CH4_column_volume_mixing_ratio_dry_air") \ + .filterDate("2019-06-01", "2019-07-16") + band_viz = { + "min": 1750, + "max": 1900, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P CH4") + Map.setCenter(0.0, 0.0, 2) + + elif cod == "COPERNICUS/S5P/OFFL/L3_CLOUD": + collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_CLOUD") \ + .select("cloud_fraction") \ + .filterDate("2019-06-01", "2019-06-02") + band_viz = { + "min": 0, + "max": 0.95, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P Cloud") + Map.setCenter(-58.14, -10.47, 2) + + elif cod == "COPERNICUS/S5P/OFFL/L3_CO": + collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_CO") \ + .select("CO_column_number_density") \ + .filterDate("2019-06-01", "2019-06-11") + band_viz = { + "min": 0, + "max": 0.05, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P CO") + Map.setCenter(-25.01, -4.28, 4) + + elif cod == "COPERNICUS/S5P/OFFL/L3_HCHO": + collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_HCHO") \ + .select("tropospheric_HCHO_column_number_density") \ + .filterDate("2019-06-01", "2019-06-06") + band_viz = { + "min": 0.0, + "max": 0.0003, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P HCHO") + Map.setCenter(0.0, 0.0, 2) + + elif cod == "COPERNICUS/S5P/OFFL/L3_NO2": + collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_NO2") \ + .select("tropospheric_NO2_column_number_density") \ + .filterDate("2019-06-01", "2019-06-06") + band_viz = { + "min": 0, + "max": 0.0002, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P N02") + Map.setCenter(65.27, 24.11, 4) + + elif cod == "COPERNICUS/S5P/OFFL/L3_O3": + collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_O3") \ + .select("O3_column_number_density") \ + .filterDate("2019-06-01", "2019-06-05") + band_viz = { + "min": 0.12, + "max": 0.15, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P O3") + Map.setCenter(0.0, 0.0, 2) + + elif cod == "COPERNICUS/S5P/OFFL/L3_O3_TCL": + collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_O3_TCL") \ + .select("ozone_tropospheric_vertical_column") \ + .filterDate("2019-06-01", "2019-07-01") + band_viz = { + "min": 0, + "max": 0.02, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P O3") + Map.setCenter(0.0, 0.0, 2) + + elif cod == "COPERNICUS/S5P/OFFL/L3_SO2": + collection = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2") \ + .select("SO2_column_number_density") \ + .filterDate("2019-06-01", "2019-06-11") + band_viz = { + "min": 0.0, + "max": 0.0005, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "S5P SO2") + Map.setCenter(0.0, 0.0, 2) + + elif cod == "CPOM/CryoSat2/ANTARCTICA_DEM": + dataset = ee.Image("CPOM/CryoSat2/ANTARCTICA_DEM") + visualization = { + "bands": ["elevation"], + "min": 0.0, + "max": 4000.0, + "palette": ["001fff", "00ffff", "fbff00", "ff0000"] + } + Map.setCenter(17.0, -76.0, 3) + Map.addLayer(dataset, visualization, "Elevation") + + elif cod == "CSIRO/SLGA": + dataset = ee.ImageCollection("CSIRO/SLGA") \ + .filter(ee.Filter.eq("attribute_code", "DES")) + soilDepth = dataset.select("DES_000_200_EV") + soilDepthVis = { + "min": 0.1, + "max": 1.84, + "palette": ["8d6738", "252525"], + } + Map.setCenter(132.495, -21.984, 5) + Map.addLayer(soilDepth, soilDepthVis, "Soil Depth") + + elif cod == "CSP/ERGo/1_0/Global/ALOS_CHILI": + dataset = ee.Image("CSP/ERGo/1_0/Global/ALOS_CHILI") + alosChili = dataset.select("constant") + alosChiliVis = { + "min": 0.0, + "max": 255.0, + } + Map.setCenter(-105.8636, 40.3439, 11) + Map.addLayer(alosChili, alosChiliVis, "ALOS CHILI") + + elif cod == "CSP/ERGo/1_0/Global/ALOS_landforms": + dataset = ee.Image("CSP/ERGo/1_0/Global/ALOS_landforms") + landforms = dataset.select("constant") + landformsVis = { + "min": 11.0, + "max": 42.0, + "palette": [ + "141414", "383838", "808080", "EBEB8F", "F7D311", "AA0000", "D89382", + "DDC9C9", "DCCDCE", "1C6330", "68AA63", "B5C98E", "E1F0E5", "a975ba", + "6f198c" + ], + } + Map.setCenter(-105.58, 40.5498, 11) + Map.addLayer(landforms, landformsVis, "Landforms") + + elif cod == "CSP/ERGo/1_0/Global/ALOS_mTPI": + dataset = ee.Image("CSP/ERGo/1_0/Global/ALOS_mTPI") + alosMtpi = dataset.select("AVE") + alosMtpiVis = { + "min": -200.0, + "max": 200.0, + "palette": ["0b1eff", "4be450", "fffca4", "ffa011", "ff0000"], + } + Map.setCenter(-105.8636, 40.3439, 11) + Map.addLayer(alosMtpi, alosMtpiVis, "ALOS mTPI") + + elif cod == "CSP/ERGo/1_0/Global/ALOS_topoDiversity": + dataset = ee.Image("CSP/ERGo/1_0/Global/ALOS_topoDiversity") + alosTopographicDiversity = dataset.select("constant") + alosTopographicDiversityVis = { + "min": 0.0, + "max": 1.0, + } + Map.setCenter(-111.313, 39.724, 6) + Map.addLayer(alosTopographicDiversity, alosTopographicDiversityVis, "ALOS Topographic Diversity") + + elif cod == "CSP/ERGo/1_0/Global/SRTM_CHILI": + dataset = ee.Image("CSP/ERGo/1_0/Global/SRTM_CHILI") + srtmChili = dataset.select("constant") + srtmChiliVis = { + "min": 0.0, + "max": 255.0, + } + Map.setCenter(-105.8636, 40.3439, 11) + Map.addLayer(srtmChili, srtmChiliVis, "SRTM CHILI") + + elif cod == "CSP/ERGo/1_0/Global/SRTM_landforms": + dataset = ee.Image("CSP/ERGo/1_0/Global/SRTM_landforms") + landforms = dataset.select("constant") + landformsVis = { + "min": 11.0, + "max": 42.0, + "palette": [ + "141414", "383838", "808080", "EBEB8F", "F7D311", "AA0000", "D89382", + "DDC9C9", "DCCDCE", "1C6330", "68AA63", "B5C98E", "E1F0E5", "a975ba", + "6f198c" + ], + } + Map.setCenter(-105.58, 40.5498, 11) + Map.addLayer(landforms, landformsVis, "Landforms") + + elif cod == "CSP/ERGo/1_0/Global/SRTM_mTPI": + dataset = ee.Image("CSP/ERGo/1_0/Global/SRTM_mTPI") + srtmMtpi = dataset.select("elevation") + srtmMtpiVis = { + "min": -200.0, + "max": 200.0, + "palette": ["0b1eff", "4be450", "fffca4", "ffa011", "ff0000"], + } + Map.setCenter(-105.8636, 40.3439, 11) + Map.addLayer(srtmMtpi, srtmMtpiVis, "SRTM mTPI") + + elif cod == "CSP/ERGo/1_0/Global/SRTM_topoDiversity": + dataset = ee.Image("CSP/ERGo/1_0/Global/SRTM_topoDiversity") + srtmTopographicDiversity = dataset.select("constant") + srtmTopographicDiversityVis = { + "min": 0.0, + "max": 1.0, + } + Map.setCenter(-111.313, 39.724, 6) + Map.addLayer(srtmTopographicDiversity, srtmTopographicDiversityVis,"SRTM Topographic Diversity") + + elif cod == "CSP/ERGo/1_0/US/CHILI": + dataset = ee.Image("CSP/ERGo/1_0/US/CHILI") + usChili = dataset.select("constant") + usChiliVis = { + "min": 0.0, + "max": 255.0, + } + Map.setCenter(-105.8636, 40.3439, 11) + Map.addLayer(usChili, usChiliVis, "US CHILI") + + elif cod == "CSP/ERGo/1_0/US/landforms": + dataset = ee.Image("CSP/ERGo/1_0/US/landforms") + landforms = dataset.select("constant") + landformsVis = { + "min": 11.0, + "max": 42.0, + "palette": [ + "141414", "383838", "808080", "EBEB8F", "F7D311", "AA0000", "D89382", + "DDC9C9", "DCCDCE", "1C6330", "68AA63", "B5C98E", "E1F0E5", "a975ba", + "6f198c" + ], + } + Map.setCenter(-105.58, 40.5498, 11) + Map.addLayer(landforms, landformsVis, "Landforms") + + elif cod == "CSP/ERGo/1_0/US/lithology": + dataset = ee.Image("CSP/ERGo/1_0/US/lithology") + lithology = dataset.select("b1") + lithologyVis = { + "min": 0.0, + "max": 20.0, + "palette": [ + "356EFF", "ACB6DA", "D6B879", "313131", "EDA800", "616161", "D6D6D6", + "D0DDAE", "B8D279", "D5D378", "141414", "6DB155", "9B6D55", "FEEEC9", + "D6B879", "00B7EC", "FFDA90", "F8B28C" + ], + } + Map.setCenter(-105.8636, 40.3439, 11) + Map.addLayer(lithology, lithologyVis, "Lithology") + + elif cod == "CSP/ERGo/1_0/US/mTPI": + dataset = ee.Image("CSP/ERGo/1_0/US/mTPI") + usMtpi = dataset.select("elevation") + usMtpiVis = { + "min": -200.0, + "max": 200.0, + "palette": ["0b1eff", "4be450", "fffca4", "ffa011", "ff0000"], + } + Map.setCenter(-105.8636, 40.3439, 11) + Map.addLayer(usMtpi, usMtpiVis, "US mTPI") + + elif cod == "CSP/ERGo/1_0/US/physioDiversity": + dataset = ee.Image("CSP/ERGo/1_0/US/physioDiversity") + physiographicDiversity = dataset.select("b1") + physiographicDiversityVis = { + "min": 0.0, + "max": 1.0, + } + Map.setCenter(-94.625, 39.825, 7) + Map.addLayer(physiographicDiversity, physiographicDiversityVis,"Physiographic Diversity") + + elif cod == "CSP/ERGo/1_0/US/physiography": + dataset = ee.Image("CSP/ERGo/1_0/US/physiography") + physiography = dataset.select("constant") + physiographyVis = { + "min": 1100.0, + "max": 4220.0, + } + Map.setCenter(-105.4248, 40.5242, 8) + Map.addLayer(physiography, physiographyVis, "Physiography") + + elif cod == "CSP/ERGo/1_0/US/topoDiversity": + dataset = ee.Image("CSP/ERGo/1_0/US/topoDiversity") + usTopographicDiversity = dataset.select("constant") + usTopographicDiversityVis = { + "min": 0.0, + "max": 1.0, + } + Map.setCenter(-111.313, 39.724, 6) + Map.addLayer(usTopographicDiversity, usTopographicDiversityVis, "US Topographic Diversity") + + elif cod == "CSP/HM/GlobalHumanModification": + dataset = ee.ImageCollection("CSP/HM/GlobalHumanModification") + visualization = {"bands": ["gHM"], + "min": 0.0, + "max": 1.0, + "palette": ["0c0c0c", "071aff", "ff0000", "ffbd03", "fbff05", "fffdfd"] + } + Map.centerObject(dataset) + Map.addLayer(dataset, visualization, "Human modification") + + elif cod == "DLR/WSF/WSF2015/v1": + dataset = ee.Image("DLR/WSF/WSF2015/v1") + opacity = 0.75 + blackBackground = ee.Image(0) + Map.addLayer(blackBackground, None, "Black background", True, opacity) + visualization = { + "min": 0, + "max": 255, + } + Map.addLayer(dataset, visualization, "Human settlement areas") + Map.setCenter(90.45, 23.7, 7) + + elif cod == "DOE/ORNL/LandScan_HD/Ukraine_202201": + dataset = ee.Image("DOE/ORNL/LandScan_HD/Ukraine_202201") + vis = { + "min": 0.0, + "max": 10.0, + "palette":["lemonchiffon", "khaki", "orange","orangered", "red", "maroon"], + } + Map.centerObject(dataset) + Map.addLayer(dataset, vis, "Population Count") + + elif cod == "ECMWF/CAMS/NRT": + dataset = ee.ImageCollection("ECMWF/CAMS/NRT").filter(ee.Filter.date("2019-01-01", "2019-01-31")) + aod = dataset.select("total_aerosol_optical_depth_at_550nm_surface") + visParams = { + "min": 0.000096, + "max": 3.582552, + "palette": [ + "5E4FA2", "3288BD", "66C2A5", "ABE0A4", + "E6F598", "FFFFBF", "FEE08B", "FDAE61", + "F46D43", "D53E4F", "9E0142" + ] + } + Map.setCenter(-94.18, 16.8, 1) + Map.addLayer(aod, visParams, "Total Aerosal Optical Depth") + + elif cod == "ECMWF/ERA5/DAILY": + era5_2mt = ee.ImageCollection("ECMWF/ERA5/DAILY").select("mean_2m_air_temperature").filter(ee.Filter.date("2019-07-01", "2019-07-31")) + + era5_tp = ee.ImageCollection("ECMWF/ERA5/DAILY").select("total_precipitation").filter(ee.Filter.date("2019-07-01", "2019-07-31")) + era5_2d = ee.ImageCollection("ECMWF/ERA5/DAILY").select("dewpoint_2m_temperature").filter(ee.Filter.date("2019-07-01", "2019-07-31")) + era5_mslp = ee.ImageCollection("ECMWF/ERA5/DAILY").select("mean_sea_level_pressure").filter(ee.Filter.date("2019-07-01", "2019-07-31")) + era5_sp = ee.ImageCollection("ECMWF/ERA5/DAILY").select("surface_pressure").filter(ee.Filter.date("2019-07-01", "2019-07-31")) + era5_u_wind_10m = ee.ImageCollection("ECMWF/ERA5/DAILY").select("u_component_of_wind_10m").filter(ee.Filter.date("2019-07-01", "2019-07-31")) + era5_sp = era5_sp.map(lambda image: image.divide(100).set("system:time_start", image.get("system:time_start"))) + visTp = {"min": 0, "max": 0.1, "palette": ["#FFFFFF", "#00FFFF", "#0080FF", "#DA00FF", "#FFA400", "#FF0000"]} + vis2mt = {"min": 250, + "max": 320, + "palette": [ + "#000080", "#0000D9", "#4000FF", "#8000FF", "#0080FF", "#00FFFF", "#00FF80", + "#80FF00", "#DAFF00", "#FFFF00", "#FFF500", "#FFDA00", "#FFB000", "#FFA400", + "#FF4F00", "#FF2500", "#FF0A00", "#FF00FF"] + } + visWind = {"min": 0, + "max": 30, + "palette": [ + "#FFFFFF", "#FFFF71", "#DEFF00", "#9EFF00", "#77B038", "#007E55", "#005F51", + "#004B51", "#013A7B", "#023AAD"] + } + visPressure = {"min": 500, + "max": 1150, + "palette": ["#01FFFF", "#058BFF", "#0600FF", "#DF00FF", "#FF00FF", "#FF8C00", "#FF8C00"] + } + Map.addLayer(era5_tp.filter(ee.Filter.date("2019-07-15")), visTp, "Daily total precipitation sums") + Map.addLayer(era5_2d.filter(ee.Filter.date("2019-07-15")), vis2mt, "Daily mean 2m dewpoint temperature") + Map.addLayer(era5_2mt.filter(ee.Filter.date("2019-07-15")), vis2mt, "Daily mean 2m air temperature") + Map.addLayer(era5_u_wind_10m.filter(ee.Filter.date("2019-07-15")), visWind, "Daily mean 10m u-component of wind") + Map.addLayer(era5_sp.filter(ee.Filter.date("2019-07-15")), visPressure, "Daily mean surface pressure") + Map.setCenter(21.2, 22.2, 2) + + elif cod == "ECMWF/ERA5/MONTHLY": + dataset = ee.ImageCollection("ECMWF/ERA5/MONTHLY") + visualization = { + "bands": ["mean_2m_air_temperature"], + "min": 250.0, + "max": 320.0, + "palette": ["#000080","#0000D9","#4000FF","#8000FF","#0080FF","#00FFFF","#00FF80","#80FF00","#DAFF00","#FFFF00","#FFF500","#FFDA00","#FFB000","#FFA400","#FF4F00","#FF2500","#FF0A00","#FF00FF"] + } + Map.setCenter(22.2, 21.2, 0) + Map.addLayer(dataset, visualization, "Monthly average air temperature [K] at 2m height") + + elif cod == "ECMWF/ERA5_LAND/DAILY_RAW": + dataset = ee.ImageCollection("ECMWF/ERA5_LAND/DAILY_RAW").filter(ee.Filter.date("2021-06-01", "2021-07-01")) + visualization = { + "bands": ["temperature_2m"], + "min": 250.0, + "max": 320.0, + "palette": ["#000080","#0000D9","#4000FF","#8000FF","#0080FF","#00FFFF","#00FF80","#80FF00","#DAFF00","#FFFF00","#FFF500","#FFDA00","#FFB000","#FFA400","#FF4F00","#FF2500","#FF0A00","#FF00FF"] + } + Map.setCenter(-170.13, 45.62, 2) + Map.addLayer(dataset, visualization, "Air temperature [K] at 2m height") + + elif cod == "ECMWF/ERA5_LAND/HOURLY": + dataset = ee.ImageCollection("ECMWF/ERA5_LAND/HOURLY").filter(ee.Filter.date("2020-07-01", "2020-07-02")) + visualization = { + "bands": ["temperature_2m"], + "min": 250.0, + "max": 320.0, + "palette": ["#000080","#0000D9","#4000FF","#8000FF","#0080FF","#00FFFF","#00FF80","#80FF00","#DAFF00","#FFFF00","#FFF500","#FFDA00","#FFB000","#FFA400","#FF4F00","#FF2500","#FF0A00","#FF00FF"] + } + Map.setCenter(22.2, 21.2, 0) + Map.addLayer(dataset, visualization, "Air temperature [K] at 2m height") + + elif cod == "ECMWF/ERA5_LAND/MONTHLY_AGGR": + dataset = ee.ImageCollection("ECMWF/ERA5_LAND/MONTHLY_AGGR").filter(ee.Filter.date("2020-02-01", "2020-07-10")) + visualization = { + "bands": ["temperature_2m"], + "min": 250.0, + "max": 320.0, + "palette": ["#000080","#0000D9","#4000FF","#8000FF","#0080FF","#00FFFF","#00FF80","#80FF00","#DAFF00","#FFFF00","#FFF500","#FFDA00","#FFB000","#FFA400","#FF4F00","#FF2500","#FF0A00","#FF00FF"] + } + Map.setCenter(-170.13, 45.62, 2) + Map.addLayer(dataset, visualization, "Air temperature [K] at 2m height") + + elif cod == "ECMWF/ERA5_LAND/MONTHLY_BY_HOUR": + dataset = ee.ImageCollection("ECMWF/ERA5_LAND/MONTHLY_BY_HOUR").filter(ee.Filter.date("2020-07-01", "2020-08-01")) + visualization = { + "bands": ["temperature_2m"], + "min": 250.0, + "max": 320.0, + "palette": ["#000080","#0000D9","#4000FF","#8000FF","#0080FF","#00FFFF","#00FF80","#80FF00","#DAFF00","#FFFF00","#FFF500","#FFDA00","#FFB000","#FFA400","#FF4F00","#FF2500","#FF0A00","#FF00FF"] + } + Map.setCenter(22.2, 21.2, 0) + Map.addLayer(dataset, visualization, "Air temperature [K] at 2m height") + + elif cod == "EO1/HYPERION": + dataset = ee.ImageCollection("EO1/HYPERION").filter(ee.Filter.date("2016-01-01", "2017-03-01")) + rgb = dataset.select(["B050", "B023", "B015"]) + rgbVis = { + "min": 1000.0, + "max": 14000.0, + "gamma": 2.5, + } + Map.setCenter(162.0044, -77.3463, 9) + Map.addLayer(rgb.median(), rgbVis, "RGB") + + elif cod == "EPA/Ecoregions/2013/L3": + dataset = ee.FeatureCollection("EPA/Ecoregions/2013/L3") + visParams = { + "palette": ["0a3b04", "1a9924", "15d812"], + "min": 23.0, + "max": 3.57e+11, + "opacity": 0.8, + } + image = ee.Image().float().paint(dataset, "shape_area") + Map.setCenter(-99.814, 40.166, 5) + Map.addLayer(image, visParams, "EPA/Ecoregions/2013/L3") + Map.addLayer(dataset, None, "for Inspector", False) + + elif cod == "EPA/Ecoregions/2013/L4": + dataset = ee.FeatureCollection("EPA/Ecoregions/2013/L4") + visParams = { + "palette": ["0a3b04", "1a9924", "15d812"], + "min": 0.0, + "max": 67800000000.0, + "opacity": 0.8, + } + image = ee.Image().float().paint(dataset, "shape_area") + Map.setCenter(-99.814, 40.166, 5) + Map.addLayer(image, visParams, "EPA/Ecoregions/2013/L4") + Map.addLayer(dataset, None, "for Inspector", False) + + elif cod == "ESA/CCI/FireCCI/5_1": + dataset = ee.ImageCollection("ESA/CCI/FireCCI/5_1").filterDate("2020-01-01", "2020-12-31") + burnedArea = dataset.select("BurnDate") + baVis = { + "min": 1, + "max": 366, + "palette": ["ff0000", "fd4100", "fb8200", "f9c400", "f2ff00", "b6ff05","7aff0a", "3eff0f", "02ff15", "00ff55", "00ff99", "00ffdd","00ddff", "0098ff", "0052ff", "0210ff", "3a0dfb", "7209f6","a905f1", "e102ed", "ff00cc", "ff0089", "ff0047", "ff0004"] + } + maxBA = burnedArea.max() + Map.setCenter(0, 18, 2.1) + Map.addLayer(maxBA, baVis, "Burned Area") + + elif cod == "ESA/GLOBCOVER_L4_200901_200912_V2_3": + dataset = ee.Image("ESA/GLOBCOVER_L4_200901_200912_V2_3") + landcover = dataset.select("landcover") + Map.setCenter(-88.6, 26.4, 3) + Map.addLayer(landcover, {}, "Landcover") + + elif cod == "ESA/WorldCover/v100": + dataset = ee.ImageCollection("ESA/WorldCover/v100").first() + visualization = { + "bands": ["Map"], + } + Map.centerObject(dataset) + Map.addLayer(dataset, visualization, "Landcover") + + elif cod == "ESA/WorldCover/v200": + dataset = ee.ImageCollection("ESA/WorldCover/v200").first() + visualization = { + "bands": ["Map"], + } + Map.centerObject(dataset) + Map.addLayer(dataset, visualization, "Landcover") + + elif cod == "FAO/GAUL/2015/level0": + dataset = ee.FeatureCollection("FAO/GAUL/2015/level0") + Map.setCenter(7.82, 49.1, 4) + styleParams = { + "fillColor": "#b5ffb4", + "color": "#00909F", + "width": 1.0, + } + dataset = dataset.style(styleParams) + Map.addLayer(dataset, {}, "Country Boundaries") + + elif cod == "FAO/GAUL/2015/level1": + dataset = ee.FeatureCollection("FAO/GAUL/2015/level1") + Map.setCenter(7.82, 49.1, 4) + styleParams = { + "fillColor": "b5ffb4", + "color": "#00909F", + "width": 1.0, + } + dataset = dataset.style(styleParams) + Map.addLayer(dataset, {}, "First Level Administrative Units") + + elif cod == "FAO/GAUL/2015/level2": + dataset = ee.FeatureCollection("FAO/GAUL/2015/level2") + Map.setCenter(12.876, 42.682, 5) + styleParams = { + "fillColor": "#b5ffb4", + "color": "#00909F", + "width": 1.0, + } + dataset = dataset.style(styleParams) + Map.addLayer(dataset, {}, "Second Level Administrative Units") + + elif cod == "FAO/GAUL_SIMPLIFIED_500m/2015/level0": + dataset = ee.FeatureCollection("FAO/GAUL_SIMPLIFIED_500m/2015/level0") + Map.setCenter(7.82, 49.1, 4) + styleParams = { + "fillColor": "#b5ffb4", + "color": "#00909F", + "width": 1.0, + } + dataset = dataset.style(styleParams) + Map.addLayer(dataset, {}, "Country Boundaries") + + elif cod == "FAO/GAUL_SIMPLIFIED_500m/2015/level1": + dataset = ee.FeatureCollection("FAO/GAUL_SIMPLIFIED_500m/2015/level1") + Map.setCenter(7.82, 49.1, 4) + styleParams = { + "fillColor": "#b5ffb4", + "color": "#00909F", + "width": 1.0, + } + dataset = dataset.style(styleParams) + Map.addLayer(dataset, {}, "First Level Administrative Units") + + elif cod == "FAO/GAUL_SIMPLIFIED_500m/2015/level2": + dataset = ee.FeatureCollection("FAO/GAUL_SIMPLIFIED_500m/2015/level2") + Map.setCenter(12.876, 42.682, 5) + styleParams = { + "fillColor": "b5ffb4", + "color": "00909F", + "width": 1.0, + } + dataset = dataset.style(styleParams) + Map.addLayer(dataset, {}, "Second Level Administrative Units") + + elif cod == "FAO/GHG/1/DROSA_A": + dataset = ee.ImageCollection("FAO/GHG/1/DROSA_A") + visualization = { + "bands": ["cropland"], + "min": 1.0, + "max": 60.0, + "palette": ["white", "red"] + } + Map.setCenter(108.0, -0.4, 6) + Map.addLayer(dataset, visualization, "Cropland area drained (Annual)") + + elif cod == "FAO/GHG/1/DROSE_A": + dataset = ee.ImageCollection("FAO/GHG/1/DROSE_A") + visualization = { + "bands": ["croplandc"], + "min": 0.1, + "max": 0.1, + "palette": ["yellow", "red"] + } + Map.setCenter(108.0, -0.4, 6) + Map.addLayer(dataset, visualization, "Cropland C emissions (Annual)") + + elif cod == "FAO/SOFO/1/FPP": + coll = ee.ImageCollection("FAO/SOFO/1/FPP") + image = coll.first().select("FPP_1km") + Map.setCenter(17.5, 20, 3) + Map.addLayer(image, {"min": 0, "max": 12, "palette": ["blue", "yellow", "red"]},"Forest proximate people – 1km cutoff distance") + + elif cod == "FAO/SOFO/1/TPP": + coll = ee.ImageCollection("FAO/SOFO/1/TPP") + image = coll.first().select("TPP_1km") + Map.setCenter(17.5, 20, 3) + Map.addLayer( + image, {"min": 0, "max": 12, "palette": ["blue", "yellow", "red"]}, "Tree proximate people – 1km cutoff distance") + + elif cod == "FAO/WAPOR/2/L1_AETI_D": + coll = ee.ImageCollection("FAO/WAPOR/2/L1_AETI_D") + image = coll.first() + Map.setCenter(17.5, 20, 3) + Map.addLayer(image, {"min": 0, "max": 50}) + + elif cod == "FAO/WAPOR/2/L1_E_D": + coll = ee.ImageCollection("FAO/WAPOR/2/L1_E_D") + image = coll.first() + Map.setCenter(17.5, 20, 3) + Map.addLayer(image, {"min": 0, "max": 10}) + + elif cod == "FAO/WAPOR/2/L1_I_D": + coll = ee.ImageCollection("FAO/WAPOR/2/L1_I_D") + image = coll.first() + Map.setCenter(17.5, 20, 3) + Map.addLayer(image, {"min": 0, "max": 50}) + + elif cod == "FAO/WAPOR/2/L1_NPP_D": + coll = ee.ImageCollection("FAO/WAPOR/2/L1_NPP_D") + image = coll.first() + Map.setCenter(17.5, 20, 3) + Map.addLayer(image, {"min": 0, "max": 5000}) + + elif cod == "FAO/WAPOR/2/L1_RET_D": + coll = ee.ImageCollection("FAO/WAPOR/2/L1_RET_D") + image = coll.first() + Map.setCenter(17.5, 20, 3) + Map.addLayer(image, {"min": 0, "max": 100}) + + elif cod == "FAO/WAPOR/2/L1_RET_E": + coll = ee.ImageCollection("FAO/WAPOR/2/L1_RET_E") + image = coll.first() + Map.setCenter(17.5, 20, 3) + Map.addLayer(image, {"min": 0, "max": 100}) + + elif cod == "FAO/WAPOR/2/L1_T_D": + coll = ee.ImageCollection("FAO/WAPOR/2/L1_T_D") + image = coll.first() + Map.setCenter(17.5, 20, 3) + Map.addLayer(image, {"min": 0, "max": 50}) + + elif cod == "FIRMS": + dataset = ee.ImageCollection("FIRMS").filter( + ee.Filter.date("2018-08-01", "2018-08-10")) + fires = dataset.select("T21") + firesVis = { + "min": 325.0, + "max": 400.0, + "palette": ["red", "orange", "yellow"], + } + Map.setCenter(-119.086, 47.295, 6) + Map.addLayer(fires, firesVis, "Fires") + + elif cod == "Finland/MAVI/VV/50cm": + dataset = ee.ImageCollection("Finland/MAVI/VV/50cm") + Map.setCenter(25.7416, 62.2446, 16) + Map.addLayer(dataset, None, "Finland 50 cm(False color)") + + elif cod == "GFW/GFF/V1/fishing_hours": + dataset = ee.ImageCollection("GFW/GFF/V1/fishing_hours").filter(ee.Filter.date("2016-12-01", "2017-01-01")) + trawlers = dataset.select("trawlers") + trawlersVis = { + "min": 0.0, + "max": 5.0, + } + Map.setCenter(16.201, 36.316, 7) + Map.addLayer(trawlers.max(), trawlersVis, "Trawlers") + + elif cod == "GFW/GFF/V1/vessel_hours": + dataset = ee.ImageCollection("GFW/GFF/V1/vessel_hours").filter(ee.Filter.date("2016-12-01", "2017-01-01")) + trawlers = dataset.select("trawlers") + trawlersVis = { + "min": 0.0, + "max": 5.0, + } + Map.setCenter(130.61, 34.287, 8) + Map.addLayer(trawlers.max(), trawlersVis, "Trawlers") + + elif cod == "GLCF/GLS_WATER": + dataset = ee.ImageCollection("GLCF/GLS_WATER") + water = dataset.select("water") + waterVis = { + "min": 1.0, + "max": 4.0, + "palette": ["FAFAFA", "00C5FF", "DF73FF", "828282", "CCCCCC"], + } + Map.setCenter(-79.3094, 44.5693, 8) + Map.addLayer(water, waterVis, "Water") + + elif cod == "GLIMS/20210914": + dataset = ee.FeatureCollection("GLIMS/20210914") + visParams = { + "palette": ["gray", "cyan", "blue"], + "min": 0.0, + "max": 10.0, + "opacity": 0.8, + } + image = ee.Image().float().paint(dataset, "area") + Map.setCenter(-35.618, 66.743, 7) + Map.addLayer(image, visParams, "GLIMS/20210914") + Map.addLayer(dataset, None, "for Inspector", False) + + elif cod == "Finland/SMK/VV/50cm": + dataset = ee.ImageCollection("Finland/SMK/VV/50cm") + Map.setCenter(25.7416, 62.2446, 16) + Map.addLayer(dataset, None, "Finland 50 cm(False color)") + + elif cod == "Finland/SMK/V/50cm": + dataset = ee.ImageCollection("Finland/SMK/V/50cm") + Map.setCenter(24.9, 60.2, 17) + Map.addLayer(dataset, None, "Finland 50 cm(color)") + + elif cod == "GLIMS/current": + dataset = ee.FeatureCollection("GLIMS/current") + visParams = { + "palette": ["gray", "cyan", "blue"], + "min": 0.0, + "max": 10.0, + "opacity": 0.8, + } + image = ee.Image().float().paint(dataset, "area") + Map.setCenter(-35.618, 66.743, 7) + Map.addLayer(image, visParams, "GLIMS/current") + Map.addLayer(dataset, None, "for Inspector", False) + + elif cod == "GLOBAL_FLOOD_DB/MODIS_EVENTS/V1": + gfd = ee.ImageCollection("GLOBAL_FLOOD_DB/MODIS_EVENTS/V1") + hurricaneIsaacDartmouthId = 3977 + hurricaneIsaacUsa = ee.Image(gfd.filterMetadata("id", "equals", hurricaneIsaacDartmouthId).first()) + Map.setOptions("SATELLITE") + Map.setCenter(-90.2922, 29.4064, 9) + Map.addLayer( + hurricaneIsaacUsa.select("flooded").selfMask(),{"min": 0, "max": 1, "palette": "001133"},"Hurricane Isaac - Inundation Extent") + durationPalette = ["C3EFFE", "1341E8", "051CB0", "001133"] + Map.addLayer(hurricaneIsaacUsa.select("duration").selfMask(),{"min": 0, "max": 4, "palette": durationPalette},"Hurricane Isaac - Duration") + gfdFloodedSum = gfd.select("flooded").sum() + Map.addLayer(gfdFloodedSum.selfMask(),{"min": 0, "max": 10, "palette": durationPalette},"GFD Satellite Observed Flood Plain") + jrc = gfd.select("jrc_perm_water").sum().gte(1) + Map.addLayer(jrc.selfMask(),{"min": 0, "max": 1, "palette": "C3EFFE"},"JRC Permanent Water") + + elif cod == "GOOGLE/DYNAMICWORLD/V1": + COL_FILTER = ee.Filter.And(ee.Filter.bounds(ee.Geometry.Point(20.6729, 52.4305)),ee.Filter.date("2021-04-02", "2021-04-03")) + dwCol = ee.ImageCollection("GOOGLE/DYNAMICWORLD/V1").filter(COL_FILTER) + s2Col = ee.ImageCollection("COPERNICUS/S2").filter(COL_FILTER) + DwS2Col = ee.Join.saveFirst("s2_img").apply(dwCol, s2Col, + ee.Filter.equals({"leftField": "system:index", "rightField": "system:index"})) + dwImage = ee.Image(DwS2Col.first()) + s2Image = ee.Image(dwImage.get("s2_img")) + CLASS_NAMES = ["water", "trees", "grass", "flooded_vegetation", "crops","shrub_and_scrub", "built", "bare", "snow_and_ice"] + VIS_PALETTE = ["419BDF", "397D49", "88B053", "7A87C6","E49635", "DFC35A", "C4281B", "A59B8F","B39FE1"] + dwRgb = dwImage.select("label").visualize({"min": 0, "max": 8, "palette": VIS_PALETTE}).divide(255) + top1Prob = dwImage.select(CLASS_NAMES).reduce(ee.Reducer.max()) + top1ProbHillshade = ee.Terrain.hillshade(top1Prob.multiply(100)).divide(255) + dwRgbHillshade = dwRgb.multiply(top1ProbHillshade) + Map.setCenter(20.6729, 52.4305, 12) + Map.addLayer(s2Image,{"min": 0, "max": 3000, "bands": ["B4", "B3", "B2"]},"Sentinel-2 L1C") + Map.addLayer(dwRgbHillshade,{"min": 0, "max": 0.65},"Dynamic World") + + elif cod == "GOOGLE/Research/open-buildings/v2/polygons": + t = ee.FeatureCollection("GOOGLE/Research/open-buildings/v2/polygons") + t_060_065 = t.filter("confidence >= 0.60 && confidence < 0.65") + t_065_070 = t.filter("confidence >= 0.65 && confidence < 0.70") + t_gte_070 = t.filter("confidence >= 0.70") + Map.addLayer(t_060_065, {"color": "FF0000"}, "Buildings confidence [0.60 0.65)") + Map.addLayer(t_065_070, {"color": "FFFF00"}, "Buildings confidence [0.65 0.70)") + Map.addLayer(t_gte_070, {"color": "00FF00"}, "Buildings confidence >= 0.70") + Map.setCenter(3.389, 6.492, 17) + Map.setOptions("SATELLITE") + + elif cod == "GRIDMET/DROUGHT": + collection = ee.ImageCollection("GRIDMET/DROUGHT") + dS = "2020-03-30" + dE = "2020-03-30" + dSUTC = ee.Date(dS, "GMT") + dEUTC = ee.Date(dE, "GMT") + filtered = collection.filterDate(dSUTC, dEUTC.advance(1, "day")) + PDSI = filtered.select("pdsi") + Z = filtered.select("z") + SPI2y = filtered.select("spi2y") + SPEI2y = filtered.select("spei2y") + EDDI2y = filtered.select("spei2y") + usdmColors = ["0000aa","0000ff","00aaff","00ffff","aaff55","ffffff","ffff00","fcd37f","ffaa00","e60000","730000"] + minColorbar= -2.5 + maxColorbar= 2.5 + colorbarOptions1 = { + "min":minColorbar, + "max":maxColorbar, + "palette": usdmColors} + minColorbar= -6 + maxColorbar= 6 + colorbarOptions2 = { + "min":minColorbar, + "max":maxColorbar, + "palette": usdmColors} + Map.addLayer(ee.Image(PDSI.first()), colorbarOptions2, "PDSI") + Map.addLayer(ee.Image(Z.first()), colorbarOptions2, "Palmer-Z") + Map.addLayer(ee.Image(SPI2y.first()), colorbarOptions1, "SPI-48months") + Map.addLayer(ee.Image(SPEI2y.first()), colorbarOptions1, "SPEI-48months") + Map.addLayer(ee.Image(EDDI2y.first()), colorbarOptions1, "EDDI-48months") + + elif cod == "Germany/Brandenburg/orthos/20cm": + dataset = ee.Image("Germany/Brandenburg/orthos/20cm") + Map.setCenter(13.386091, 52.507899, 18) + Map.addLayer(dataset, None, "Brandenburg 20cm") + + elif cod == "HYCOM/sea_surface_elevation": + dataset = ee.ImageCollection("HYCOM/sea_surface_elevation").filter(ee.Filter.date("2018-08-01", "2018-08-15")) + surfaceElevation = dataset.select("surface_elevation") + surfaceElevationVis = { + "min": -2000.0, + "max": 2000.0, + "palette": ["blue", "cyan", "yellow", "red"], + } + Map.setCenter(-28.1, 28.3, 1) + Map.addLayer(surfaceElevation, surfaceElevationVis, "Surface Elevation") + + elif cod == "HYCOM/sea_temp_salinity": + dataset = ee.ImageCollection("HYCOM/sea_temp_salinity").filter(ee.Filter.date("2018-08-01", "2018-08-15")) + seaWaterTemperature = dataset.select("water_temp_0").map(lambda image: ee.Image(image).multiply(0.001).add(20)) + visParams = { + "min": -2.0, + "max": 34.0, + "palette": ["000000", "005aff", "43c8c8", "fff700", "ff0000"], + } + Map.setCenter(-88.6, 26.4, 1) + Map.addLayer(seaWaterTemperature.mean(), visParams, "Sea Water Temperature") + + + elif cod == "HYCOM/sea_water_velocity": + velocity = ee.Image("HYCOM/sea_water_velocity/2014040700").divide(1000) + Map.addLayer(velocity.select("velocity_u_0").hypot(velocity.select("velocity_v_0"))) + Map.setCenter(-60, 33, 5) + + elif cod == "IDAHO_EPSCOR/GRIDMET": + dataset = ee.ImageCollection("IDAHO_EPSCOR/GRIDMET").filter(ee.Filter.date("2018-08-01", "2018-08-15")) + maximumTemperature = dataset.select("tmmx") + maximumTemperatureVis = { + "min": 290.0, + "max": 314.0, + "palette": ["d8d8d8", "4addff", "5affa3", "f2ff89", "ff725c"], + } + Map.setCenter(-115.356, 38.686, 5) + Map.addLayer(maximumTemperature, maximumTemperatureVis, "Maximum Temperature") + + elif cod == "IDAHO_EPSCOR/MACAv2_METDATA": + dataset = ee.ImageCollection("IDAHO_EPSCOR/MACAv2_METDATA").filter(ee.Filter.date("2018-08-01", "2018-08-15")) + maximumTemperature = dataset.select("tasmax") + maximumTemperatureVis = { + "min": 290.0, + "max": 314.0, + "palette": ["d8d8d8", "4addff", "5affa3", "f2ff89", "ff725c"], + } + Map.setCenter(-84.37, 33.5, 5) + Map.addLayer(maximumTemperature, maximumTemperatureVis, "Maximum Temperature") + + elif cod == "IDAHO_EPSCOR/MACAv2_METDATA_MONTHLY": + dataset = ee.ImageCollection("IDAHO_EPSCOR/MACAv2_METDATA_MONTHLY").filter(ee.Filter.date("2018-07-01", "2018-08-01")) + maximumTemperature = dataset.select("tasmax") + maximumTemperatureVis = { + "min": 290.0, + "max": 314.0, + "palette": ["d8d8d8", "4addff", "5affa3", "f2ff89", "ff725c"], + } + Map.setCenter(-115.356, 38.686, 5) + Map.addLayer(maximumTemperature, maximumTemperatureVis, "Maximum Temperature") + + elif cod == "IDAHO_EPSCOR/TERRACLIMATE": + dataset = ee.ImageCollection("IDAHO_EPSCOR/TERRACLIMATE").filter(ee.Filter.date("2017-07-01", "2017-08-01")) + maximumTemperature = dataset.select("tmmx") + maximumTemperatureVis = { + "min": -300.0, + "max": 300.0, + "palette": ["1a3678", "2955bc", "5699ff", "8dbae9", "acd1ff", "caebff", "e5f9ff", + "fdffb4", "ffe6a2", "ffc969", "ffa12d", "ff7c1f", "ca531a", "ff0000", "ab0000"]} + Map.setCenter(71.72, 52.48, 3) + Map.addLayer(maximumTemperature, maximumTemperatureVis, "Maximum Temperature") + + elif cod == "IGN/RGE_ALTI/1M/2_0/FXX": + dataset = ee.Image("IGN/RGE_ALTI/1M/2_0/FXX") + elevation = dataset.select("MNT") + elevationVis = { + "min": 0, + "max": 1000, + "palette": ["006600", "002200", "fff700", "ab7634", "c4d0ff", "ffffff"]} + Map.addLayer(elevation, elevationVis, "Elevation") + Map.setCenter(3, 47, 5) + + ###https://developers.google.com/earth-engine/datasets/catalog/ISDASOIL_Africa_v1_aluminium_extractable + + elif cod == "ISDASOIL/Africa/v1/aluminium_extractable": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + Map.setCenter(25, -3, 2) + raw = ee.Image("ISDASOIL/Africa/v1/aluminium_extractable") + Map.addLayer( + raw.select(0).sldStyle(mean_0_20), {},"Aluminium, extractable, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Aluminium, extractable, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Aluminium, extractable, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Aluminium, extractable, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + Map.addLayer(converted.select(0), {"min": 0, "max": 100},"Aluminium, extractable, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/bedrock_depth": + mean_0_200 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_200 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/bedrock_depth") + Map.addLayer(raw.select(0).sldStyle(mean_0_200), {},"Bedrock depth, mean visualization, 0-200 cm") + Map.addLayer(raw.select(1).sldStyle(stdev_0_200), {},"Bedrock depth, stdev visualization, 0-200 cm") + visualization = {"min": 27, "max": 200} + Map.setCenter(25, -3, 2) + Map.addLayer(raw.select(0), visualization, "Bedrock depth, mean, 0-200 cm") + + elif cod == "ISDASOIL/Africa/v1/bulk_density": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/bulk_density") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Bulk density, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Bulk density, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Bulk density, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Bulk density, stdev visualization, 20-50 cm") + converted = raw.divide(100) + visualization = {"min": 1, "max": 1.5} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Bulk density, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/calcium_extractable": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/calcium_extractable") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Calcium, extractable, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Calcium, extractable, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Calcium, extractable, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Calcium, extractable, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + visualization = {"min": 100, "max": 2000} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Calcium, extractable, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/carbon_organic": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/carbon_organic") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Carbon, organic, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Carbon, organic, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Carbon, organic, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Carbon, organic, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + visualization = {"min": 0, "max": 20} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Carbon, organic, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/carbon_total": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/carbon_total") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Carbon, total, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Carbon, total, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Carbon, total, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Carbon, total, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + visualization = {"min": 0, "max": 60} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Carbon, total, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/cation_exchange_capacity": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/cation_exchange_capacity") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Cation exchange capacity, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Cation exchange capacity, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Cation exchange capacity, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Cation exchange capacity, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + visualization = {"min": 0, "max": 25} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Cation exchange capacity, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/clay_content": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/clay_content") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Clay content, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Clay content, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Clay content, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Clay content, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + visualization = {"min": 0, "max": 50} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Clay content, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/fcc": + raw = ee.Image("ISDASOIL/Africa/v1/fcc").select(0) + converted = ee.Image(raw.mod(3000).copyProperties(raw)) + Map.setCenter(25, -3, 2) + Map.addLayer(converted, {}, "Fertility Capability Classification") + + elif cod == "ISDASOIL/Africa/v1/iron_extractable": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/iron_extractable") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Iron, extractable, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Iron, extractable, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Iron, extractable, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Iron, extractable, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + visualization = {"min": 0, "max": 140} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Iron, extractable, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/magnesium_extractable": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/magnesium_extractable") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Magnesium, extractable, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Magnesium, extractable, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Magnesium, extractable, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Magnesium, extractable, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + visualization = {"min": 0, "max": 500} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Magnesium, extractable, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/nitrogen_total": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/nitrogen_total") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Nitrogen, total, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Nitrogen, total, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Nitrogen, total, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Nitrogen, total, stdev visualization, 20-50 cm") + converted = raw.divide(100).exp().subtract(1) + visualization = {"min": 0, "max": 10000} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Nitrogen, total, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/ph": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/ph") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"ph, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"ph, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"ph, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"ph, stdev visualization, 20-50 cm") + converted = raw.divide(10) + visualization = {"min": 4, "max": 8} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "ph, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/phosphorus_extractable": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/phosphorus_extractable") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Phosphorus extractable, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Phosphorus extractable, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Phosphorus extractable, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Phosphorus extractable, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + visualization = {"min": 0, "max": 15} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Phosphorus extractable, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/potassium_extractable": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/potassium_extractable") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Potassium extractable, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Potassium extractable, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Potassium extractable, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Potassium extractable, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + visualization = {"min": 0, "max": 250} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Potassium extractable, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/sand_content": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/sand_content") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Sand content, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Sand content, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Sand content, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Sand content, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + visualization = {"min": 0, "max": 3000} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Sand content, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/silt_content": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/silt_content") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Silt content, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Silt content, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Silt content, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Silt content, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + visualization = {"min": 0, "max": 15} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Silt content, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/stone_content": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/stone_content") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Stone content, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Stone content, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Stone content, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Stone content, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + visualization = {"min": 0, "max": 6} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Stone content, mean, 0-20 cm") + + elif cod == "ISDASOIL/Africa/v1/sulphur_extractable": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/sulphur_extractable") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Sulphur extractable, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Sulphur extractable, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Sulphur extractable, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Sulphur extractable, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + visualization = {"min": 0, "max": 20} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Sulphur extractable, mean, 0-20 cm") + + + + elif cod == "ISDASOIL/Africa/v1/texture_class": + raw = ee.Image("ISDASOIL/Africa/v1/texture_class") + Map.addLayer(raw.select(0), {}, "Texture class, 0-20 cm") + Map.addLayer(raw.select(1), {}, "Texture class, 20-50 cm") + Map.setCenter(25, -3, 2) + + elif cod == "ISDASOIL/Africa/v1/zinc_extractable": + mean_0_20 = """ + + + + + + + + + + + + + + + + + + + + """ + mean_20_50 = """ + + + + + + + + + + + + + + + + + + + + """ + stdev_0_20 = """ + + + + + + + + + + """ + stdev_20_50 = """ + + + + + + + + + + """ + raw = ee.Image("ISDASOIL/Africa/v1/zinc_extractable") + Map.addLayer(raw.select(0).sldStyle(mean_0_20), {},"Zinc, extractable, mean visualization, 0-20 cm") + Map.addLayer(raw.select(1).sldStyle(mean_20_50), {},"Zinc, extractable, mean visualization, 20-50 cm") + Map.addLayer(raw.select(2).sldStyle(stdev_0_20), {},"Zinc, extractable, stdev visualization, 0-20 cm") + Map.addLayer(raw.select(3).sldStyle(stdev_20_50), {},"Zinc, extractable, stdev visualization, 20-50 cm") + converted = raw.divide(10).exp().subtract(1) + visualization = {"min": 0, "max": 10} + Map.setCenter(25, -3, 2) + Map.addLayer(converted.select(0), visualization, "Zinc, extractable, mean, 0-20 cm") + + elif cod == "JAXA/ALOS/AVNIR-2/ORI": + dataset = ee.ImageCollection("JAXA/ALOS/AVNIR-2/ORI").filter(ee.Filter.date("2011-01-01", "2011-04-01")) + avnir2OriRgb = dataset.select(["B3", "B2", "B1"]) + avnir2OriRgbVis = { + "min": 0.0, + "max": 255.0, + } + Map.setCenter(138.7302, 35.3641, 12) + Map.addLayer(avnir2OriRgb, avnir2OriRgbVis, "AVNIR-2 ORI RGB") + + elif cod == "JAXA/ALOS/AW3D30/V3_2": + dataset = ee.ImageCollection("JAXA/ALOS/AW3D30/V3_2") + elevation = dataset.select("DSM") + elevationVis = { + "min": 0, + "max": 5000, + "palette": ["0000ff", "00ffff", "ffff00", "ff0000", "ffffff"] + } + Map.setCenter(138.73, 35.36, 11) + Map.addLayer(elevation, elevationVis, "Elevation") + proj = elevation.first().select(0).projection() + slopeReprojected = ee.Terrain.slope(elevation.mosaic().setDefaultProjection(proj)) + Map.addLayer(slopeReprojected, {"min": 0, "max": 45}, "Slope") + + elif cod == "JAXA/ALOS/PALSAR-2/Level2_2/ScanSAR": + collection = ee.ImageCollection("JAXA/ALOS/PALSAR-2/Level2_2/ScanSAR").filterBounds(ee.Geometry.Point(143, -5)) + image = collection.first() + Map.addLayer(image.select(["HH"]), {"min": 0, "max": 8000}, "HH polarization") + Map.centerObject(image) + + elif cod =="JAXA/ALOS/PALSAR/YEARLY/FNF": + dataset = ee.ImageCollection("JAXA/ALOS/PALSAR/YEARLY/FNF").filterDate("2017-01-01", "2017-12-31") + forestNonForest = dataset.select("fnf") + forestNonForestVis = { + "min": 1.0, + "max": 3.0, + "palette": ["006400", "FEFF99", "0000FF"], + } + Map.setCenter(136.85, 37.37, 4) + Map.addLayer(forestNonForest, forestNonForestVis, "Forest/Non-Forest") + + elif cod == "JAXA/ALOS/PALSAR/YEARLY/FNF4": + dataset = ee.ImageCollection("JAXA/ALOS/PALSAR/YEARLY/FNF4").filterDate("2018-01-01", "2018-12-31") + forestNonForest = dataset.select("fnf") + forestNonForestVis = { + "min": 1.0, + "max": 4.0, + "palette": ["00B200","83EF62","FFFF99","0000FF"], + } + Map.setCenter(136.85, 37.37, 4) + Map.addLayer(forestNonForest, forestNonForestVis, "Forest/Non-Forest") + + elif cod == "JAXA/ALOS/PALSAR/YEARLY/SAR": + dataset = ee.ImageCollection("JAXA/ALOS/PALSAR/YEARLY/SAR").filter(ee.Filter.date("2017-01-01", "2018-01-01")) + sarHh = dataset.select("HH") + sarHhVis = { + "min": 0.0, + "max": 10000.0, + } + Map.setCenter(136.85, 37.37, 4) + Map.addLayer(sarHh, sarHhVis, "SAR HH") + + elif cod == "JAXA/ALOS/PALSAR/YEARLY/SAR_EPOCH": + dataset = ee.ImageCollection("JAXA/ALOS/PALSAR/YEARLY/SAR_EPOCH").filter(ee.Filter.date("2017-01-01", "2018-01-01")) + sarHh = dataset.select("HH") + sarHhVis = { + "min": 0.0, + "max": 10000.0, + } + Map.setCenter(136.85, 37.37, 4) + Map.addLayer(sarHh, sarHhVis, "SAR HH") + + elif cod == "JAXA/GCOM-C/L3/LAND/LAI/V1": + dataset = ee.ImageCollection("JAXA/GCOM-C/L3/LAND/LAI/V1").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) + dataset = dataset.mean().multiply(0.001) + visualization = { + "bands": ["LAI_AVE"], + "min": -7, + "max": 7, + "palette": [ + "040274","040281","0502a3","0502b8","0502ce","0502e6", + "0602ff","235cb1","307ef3","269db1","30c8e2","32d3ef", + "3be285","3ff38f","86e26f","3ae237","b5e22e","d6e21f", + "fff705","ffd611","ffb613","ff8b13","ff6e08","ff500d", + "ff0000","de0101","c21301","a71001","911003", + ] + } + Map.setCenter(128.45, 33.33, 5) + Map.addLayer(dataset, visualization, "Leaf Area Index") + + elif cod == "JAXA/GCOM-C/L3/LAND/LAI/V2": + dataset = ee.ImageCollection("JAXA/GCOM-C/L3/LAND/LAI/V2").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) + dataset = dataset.mean().multiply(0.001) + visualization = { + "bands": ["LAI_AVE"], + "min": -7, + "max": 7, + "palette": [ + "040274","040281","0502a3","0502b8","0502ce","0502e6", + "0602ff","235cb1","307ef3","269db1","30c8e2","32d3ef", + "3be285","3ff38f","86e26f","3ae237","b5e22e","d6e21f", + "fff705","ffd611","ffb613","ff8b13","ff6e08","ff500d", + "ff0000","de0101","c21301","a71001","911003", + ] + } + Map.setCenter(128.45, 33.33, 5) + Map.addLayer(dataset, visualization, "Leaf Area Index") + + elif cod == "JAXA/GCOM-C/L3/LAND/LAI/V3": + dataset = ee.ImageCollection("JAXA/GCOM-C/L3/LAND/LAI/V3").filterDate("2021-12-01", "2022-01-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) + dataset = dataset.mean().multiply(0.001) + visualization = { + "bands": ["LAI_AVE"], + "min": -7, + "max": 7, + "palette": [ + "040274","040281","0502a3","0502b8","0502ce","0502e6", + "0602ff","235cb1","307ef3","269db1","30c8e2","32d3ef", + "3be285","3ff38f","86e26f","3ae237","b5e22e","d6e21f", + "fff705","ffd611","ffb613","ff8b13","ff6e08","ff500d", + "ff0000","de0101","c21301","a71001","911003", + ] + } + Map.setCenter(128.45, 33.33, 5) + Map.addLayer(dataset, visualization, "Leaf Area Index") + + elif cod == "JAXA/GCOM-C/L3/LAND/LST/V1": + dataset = ee.ImageCollection("JAXA/GCOM-C/L3/LAND/LST/V1").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) + dataset = dataset.mean().multiply(0.02) + visualization = { + "bands": ["LST_AVE"], + "min": 250, + "max": 316, + "palette": [ + "040274","040281","0502a3","0502b8","0502ce","0502e6", + "0602ff","235cb1","307ef3","269db1","30c8e2","32d3ef", + "3be285","3ff38f","86e26f","3ae237","b5e22e","d6e21f", + "fff705","ffd611","ffb613","ff8b13","ff6e08","ff500d", + "ff0000","de0101","c21301","a71001","911003", + ] + } + Map.setCenter(128.45, 33.33, 5) + Map.addLayer(dataset, visualization, "Land Surface Temperature") + + elif cod == "JAXA/GCOM-C/L3/LAND/LST/V2": + dataset = ee.ImageCollection("JAXA/GCOM-C/L3/LAND/LST/V2").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) + dataset = dataset.mean().multiply(0.02) + visualization = { + "bands": ["LST_AVE"], + "min": 250, + "max": 316, + "palette": [ + "040274","040281","0502a3","0502b8","0502ce","0502e6", + "0602ff","235cb1","307ef3","269db1","30c8e2","32d3ef", + "3be285","3ff38f","86e26f","3ae237","b5e22e","d6e21f", + "fff705","ffd611","ffb613","ff8b13","ff6e08","ff500d", + "ff0000","de0101","c21301","a71001","911003", + ] + } + Map.setCenter(128.45, 33.33, 5) + Map.addLayer(dataset, visualization, "Land Surface Temperature") + + elif cod == "JAXA/GCOM-C/L3/LAND/LST/V3": + dataset = ee.ImageCollection("JAXA/GCOM-C/L3/LAND/LST/V3").filterDate("2021-12-01", "2022-01-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) + dataset = dataset.mean().multiply(0.02) + visualization = { + "bands": ["LST_AVE"], + "min": 250, + "max": 316, + "palette": [ + "040274","040281","0502a3","0502b8","0502ce","0502e6", + "0602ff","235cb1","307ef3","269db1","30c8e2","32d3ef", + "3be285","3ff38f","86e26f","3ae237","b5e22e","d6e21f", + "fff705","ffd611","ffb613","ff8b13","ff6e08","ff500d", + "ff0000","de0101","c21301","a71001","911003", + ] + } + Map.setCenter(128.45, 33.33, 5) + Map.addLayer(dataset, visualization, "Land Surface Temperature") + + elif cod == "JAXA/GCOM-C/L3/OCEAN/CHLA/V1": + dataset = ee.ImageCollection("JAXA/GCOM-C/L3/OCEAN/CHLA/V1").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) + image = dataset.mean().multiply(0.0016).log10() + vis = { + "bands": ["CHLA_AVE"], + "min": -2, + "max": 2, + "palette": [ + "3500a8","0800ba","003fd6", + "00aca9","77f800","ff8800", + "b30000","920000","880000" + ] + } + Map.addLayer(image, vis, "Chlorophyll-a concentration") + Map.setCenter(128.45, 33.33, 5) + + elif cod == "JAXA/GCOM-C/L3/OCEAN/CHLA/V2": + dataset = ee.ImageCollection("JAXA/GCOM-C/L3/OCEAN/CHLA/V2").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) + image = dataset.mean().multiply(0.0016).log10() + vis = { + "bands": ["CHLA_AVE"], + "min": -2, + "max": 2, + "palette": [ + "3500a8","0800ba","003fd6", + "00aca9","77f800","ff8800", + "b30000","920000","880000" + ] + } + Map.addLayer(image, vis, "Chlorophyll-a concentration") + Map.setCenter(128.45, 33.33, 5) + + elif cod == "JAXA/GCOM-C/L3/OCEAN/CHLA/V3": + dataset = ee.ImageCollection("JAXA/GCOM-C/L3/OCEAN/CHLA/V3").filterDate("2021-12-01", "2022-01-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) + image = dataset.mean().multiply(0.0016).log10() + vis = { + "bands": ["CHLA_AVE"], + "min": -2, + "max": 2, + "palette": [ + "3500a8","0800ba","003fd6", + "00aca9","77f800","ff8800", + "b30000","920000","880000" + ] + } + Map.addLayer(image, vis, "Chlorophyll-a concentration") + Map.setCenter(128.45, 33.33, 5) + + elif cod == "JAXA/GCOM-C/L3/OCEAN/SST/V1": + dataset = ee.ImageCollection("JAXA/GCOM-C/L3/OCEAN/SST/V1").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) + dataset = dataset.mean().multiply(0.0012).add(-10) + vis = { + "bands": ["SST_AVE"], + "min": 0, + "max": 30, + "palette": ["000000", "005aff", "43c8c8", "fff700", "ff0000"], + } + Map.setCenter(128.45, 33.33, 5) + Map.addLayer(dataset, vis, "Sea Surface Temperature") + + elif cod == "JAXA/GCOM-C/L3/OCEAN/SST/V2": + dataset = ee.ImageCollection("JAXA/GCOM-C/L3/OCEAN/SST/V2").filterDate("2020-01-01", "2020-02-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) + dataset = dataset.mean().multiply(0.0012).add(-10) + vis = { + "bands": ["SST_AVE"], + "min": 0, + "max": 30, + "palette": ["000000", "005aff", "43c8c8", "fff700", "ff0000"], + } + Map.setCenter(128.45, 33.33, 5) + Map.addLayer(dataset, vis, "Sea Surface Temperature") + + elif cod == "JAXA/GCOM-C/L3/OCEAN/SST/V3": + dataset = ee.ImageCollection("JAXA/GCOM-C/L3/OCEAN/SST/V3").filterDate("2021-12-01", "2022-01-01").filter(ee.Filter.eq("SATELLITE_DIRECTION", "D")) + dataset = dataset.mean().multiply(0.0012).add(-10) + vis = { + "bands": ["SST_AVE"], + "min": 0, + "max": 30, + "palette": ["000000", "005aff", "43c8c8", "fff700", "ff0000"], + } + Map.setCenter(128.45, 33.33, 5) + Map.addLayer(dataset, vis, "Sea Surface Temperature") + + elif cod == "JAXA/GPM_L3/GSMaP/v6/operational": + dataset = ee.ImageCollection("JAXA/GPM_L3/GSMaP/v6/operational").filter(ee.Filter.date("2018-08-06", "2018-08-07")) + precipitation = dataset.select("hourlyPrecipRate") + precipitationVis = { + "min": 0.0, + "max": 30.0, + "palette": + ["1621a2", "ffffff", "03ffff", "13ff03", "efff00", "ffb103", "ff2300"], + } + Map.setCenter(-90.7, 26.12, 2) + Map.addLayer(precipitation, precipitationVis, "Precipitation") + + elif cod == "JAXA/GPM_L3/GSMaP/v6/reanalysis": + dataset = ee.ImageCollection("JAXA/GPM_L3/GSMaP/v6/reanalysis").filter(ee.Filter.date("2014-02-01", "2014-02-02")) + precipitation = dataset.select("hourlyPrecipRate") + precipitationVis = { + "min": 0.0, + "max": 30.0, + "palette": + ["1621a2", "ffffff", "03ffff", "13ff03", "efff00", "ffb103", "ff2300"], + } + Map.setCenter(-90.7, 26.12, 2) + Map.addLayer(precipitation, precipitationVis, "Precipitation") + + elif cod == "JCU/Murray/GIC/global_tidal_wetland_change/2019": + dataset = ee.Image("JCU/Murray/GIC/global_tidal_wetland_change/2019") + Map.setCenter(103.7, 1.3, 12) + Map.setOptions("SATELLITE") + plasma = [ + "0d0887", "3d049b", "6903a5", "8d0fa1", "ae2891", "cb4679", "df6363", + "f0844c", "faa638", "fbcc27", "f0f921" + ] + Map.addLayer(dataset.select("twprobabilityStart"), {"palette": plasma, "min": 0, "max": 100},"twprobabilityStart", False, 1) + Map.addLayer(dataset.select("twprobabilityEnd"), {"palette": plasma, "min": 0, "max": 100},"twprobabilityEnd", False, 1) + lossPalette = ["FE4A49"] + gainPalette = ["2AB7CA"] + Map.addLayer(dataset.select("loss"), {"palette": lossPalette, "min": 1, "max": 1},"Tidal wetland loss", True, 1) + Map.addLayer(dataset.select("gain"), {"palette": gainPalette, "min": 1, "max": 1},"Tidal wetland gain", True, 1) + viridis = ["440154", "414487", "2a788e", "22a884", "7ad151", "fde725"] + Map.addLayer(dataset.select("lossYear"), {"palette": viridis, "min": 4, "max": 19},"Year of loss", False, 0.9) + Map.addLayer(dataset.select("gainYear"), {"palette": viridis, "min": 4, "max": 19},"Year of gain", False, 0.9) + classPalette = ["9e9d9d", "ededed", "FF9900", "009966", "960000", "006699"] + classNames = ["None", "None", "Tidal flat", "Mangrove", "None", "Tidal marsh"] + Map.addLayer(dataset.select("lossType"), {"palette": classPalette, "min": 0, "max": 5}, "Loss type", False, 0.9) + Map.addLayer(dataset.select("gainType"), {"palette": classPalette, "min": 0, "max": 5}, "Gain type", False, 0.9) + + elif cod == "JRC/D5/EUCROPMAP/V1": + image = ee.Image("JRC/D5/EUCROPMAP/V1/2018") + Map.addLayer(image, {}, "EUCROPMAP 2018") + Map.setCenter(10, 48, 4) + + elif cod == "JRC/GHSL/P2016/BUILT_LDSMT_GLOBE_V1": + dataset = ee.Image("JRC/GHSL/P2016/BUILT_LDSMT_GLOBE_V1") + builtUpMultitemporal = dataset.select("built") + visParams = { + "min": 1.0, + "max": 6.0, + "palette": ["0c1d60", "000000", "448564", "70daa4", "83ffbf", "ffffff"], + } + Map.setCenter(8.9957, 45.5718, 12) + Map.addLayer(builtUpMultitemporal, visParams, "Built-Up Multitemporal") + + elif cod == "JRC/GHSL/P2016/POP_GPW_GLOBE_V1": + dataset = ee.ImageCollection("JRC/GHSL/P2016/POP_GPW_GLOBE_V1").filter(ee.Filter.date("2015-01-01", "2015-12-31")) + populationCount = dataset.select("population_count") + populationCountVis = { + "min": 0.0, + "max": 200.0, + "palette": ["060606", "337663", "337663", "ffffff"], + } + Map.setCenter(78.22, 22.59, 3) + Map.addLayer(populationCount, populationCountVis, "Population Count") + + elif cod == "JRC/GHSL/P2016/SMOD_POP_GLOBE_V1": + dataset = ee.ImageCollection("JRC/GHSL/P2016/SMOD_POP_GLOBE_V1").filter(ee.Filter.date("2015-01-01", "2015-12-31")) + degreeOfUrbanization = dataset.select("smod_code") + visParams = { + "min": 0.0, + "max": 3.0, + "palette": ["000000", "448564", "70daa4", "ffffff"], + } + Map.setCenter(114.96, 31.13, 4) + Map.addLayer(degreeOfUrbanization, visParams, "Degree of Urbanization") + + elif cod == "JRC/GSW1_4/GlobalSurfaceWater": + dataset = ee.Image("JRC/GSW1_4/GlobalSurfaceWater") + visualization = { + "bands": ["occurrence"], + "min": 0.0, + "max": 100.0, + "palette": ["ffffff", "ffbbbb", "0000ff"] + } + Map.setCenter(59.414, 45.182, 6) + Map.addLayer(dataset, visualization, "Occurrence") + + elif cod == "JRC/GSW1_4/Metadata": + dataset = ee.Image("JRC/GSW1_4/Metadata") + visualization = { + "bands": ["detections", "valid_obs", "total_obs"], + "min": 100.0, + "max": 900.0, + } + Map.setCenter(71.72, 52.48, 0) + Map.addLayer(dataset, visualization, "Detections/Observations") + + elif cod == "JRC/GSW1_4/MonthlyHistory": + dataset = ee.Image("JRC/GSW1_4/MonthlyHistory/2020_06") + visualization = { + "bands": ["water"], + "min": 0.0, + "max": 2.0, + "palette": ["ffffff", "fffcb8", "0905ff"] + } + Map.setCenter(-121.234, 38.109, 7) + Map.addLayer(dataset, visualization, "Water") + + elif cod == "JRC/GSW1_4/MonthlyRecurrence": + dataset = ee.ImageCollection("JRC/GSW1_4/MonthlyRecurrence") + visualization = { + "bands": ["monthly_recurrence"], + "min": 0.0, + "max": 100.0, + "palette": ["ffffff", "ffbbbb", "0000ff"] + } + Map.setCenter(-51.482, -0.835, 6) + Map.addLayer(dataset, visualization, "Monthly Recurrence") + + elif cod == "JRC/GSW1_4/YearlyHistory": + dataset = ee.ImageCollection("JRC/GSW1_4/YearlyHistory") + visualization = { + "bands": ["waterClass"], + "min": 0.0, + "max": 3.0, + "palette": ["cccccc", "ffffff", "99d9ea", "0000ff"] + } + Map.setCenter(59.414, 45.182, 7) + Map.addLayer(dataset, visualization, "Water Class") + + elif cod == "JRC/GWIS/GlobFire/v2/DailyPerimeters": + folder = "JRC/GWIS/GlobFire/v2/DailyPerimeters" + def printAssetList(listAssetsOutput): + print("Asset list:", listAssetsOutput["assets"]) + ee.data.listAssets(folder, {}, printAssetList) + + tableName = "JRC/GWIS/GlobFire/v2/DailyPerimeters/2020" + computeArea = lambda f: f.set({"area": f.area()}) + + features = ee.FeatureCollection(tableName).map(computeArea) + visParams = { + "palette": ["f5ff64", "b5ffb4", "beeaff", "ffc0e8", "8e8dff", "adadad"], + "min": 0.0, + "max": 600000000.0, + "opacity": 0.8, + } + image = ee.Image().float().paint(features, "area") + Map.addLayer(image, visParams, "GlobFire 2020") + Map.addLayer(features, None, "For Inspector", False) + Map.setCenter(-121.23, 39.7, 12) + + elif cod == "JRC/GWIS/GlobFire/v2/FinalPerimeters": + dataset = ee.FeatureCollection("JRC/GWIS/GlobFire/v2/FinalPerimeters") + visParams = { + "palette": ["f5ff64", "b5ffb4", "beeaff", "ffc0e8", "8e8dff", "adadad"], + "min": 0.0, + "max": 600000000.0, + "opacity": 0.8, + } + image = ee.Image().float().paint(dataset, "area") + Map.addLayer(image, visParams, "GlobFire Final") + Map.addLayer(dataset, None, "for Inspector", False) + Map.setCenter(-122.121, 38.56, 12) + + elif cod == "JRC/LUCAS_HARMO/COPERNICUS_POLYGONS/V1/2018": + dataset = ee.FeatureCollection("JRC/LUCAS_HARMO/COPERNICUS_POLYGONS/V1/2018") + visParams = { + "min": 35, + "max": 60 + } + dataset2 = dataset.map(lambda f: ee.Feature(f.buffer(5000))) + image = ee.Image().float().paint(dataset2, "gps_lat").randomVisualizer() + Map.addLayer(ee.Image(1), {"min":0, "max":1}, "background") + Map.addLayer(image, visParams, "LUCAS Polygons") + Map.addLayer(dataset, None, "for Inspector", False) + Map.setCenter(19.514, 51.82, 8) + + elif cod == "JRC/LUCAS_HARMO/THLOC/V1": + dataset = ee.FeatureCollection("JRC/LUCAS_HARMO/THLOC/V1") + Map.addLayer(dataset, {}, "LUCAS Points (data)", False) + dataset = dataset.style({ + "color": "489734", + "pointSize": 3 + }) + Map.setCenter(-3.8233, 40.609, 10) + Map.addLayer(dataset, {}, "LUCAS Points (styled green)") + + elif cod == "KNTU/LiDARLab/IranLandCover/V1": + dataset = ee.Image("KNTU/LiDARLab/IranLandCover/V1") + visualization = { + "bands": ["classification"] + } + Map.setCenter(54.0, 33.0, 5) + Map.addLayer(dataset, visualization, "Classification") + + elif cod == "LANDFIRE/Fire/FRG/v1_2_0": + dataset = ee.ImageCollection("LANDFIRE/Fire/FRG/v1_2_0") + visualization = { + "bands": ["FRG"] + } + Map.setCenter(-121.671, 40.699, 5) + Map.addLayer(dataset, visualization, "FRG") + + elif cod == "LANDFIRE/Fire/MFRI/v1_2_0": + dataset = ee.ImageCollection("LANDFIRE/Fire/MFRI/v1_2_0") + visualization = { + "bands": ["MFRI"] + } + Map.setCenter(-121.671, 40.699, 5) + Map.addLayer(dataset, visualization, "MFRI") + + elif cod == "LANDFIRE/Fire/PLS/v1_2_0": + dataset = ee.ImageCollection("LANDFIRE/Fire/PLS/v1_2_0") + visualization = { + "bands": ["PLS"] + } + Map.setCenter(-121.671, 40.699, 5) + Map.addLayer(dataset, visualization, "PLS") + + elif cod == "LANDFIRE/Fire/PMS/v1_2_0": + dataset = ee.ImageCollection("LANDFIRE/Fire/PMS/v1_2_0") + visualization = { + "bands": ["PMS"] + } + Map.setCenter(-121.671, 40.699, 5) + Map.addLayer(dataset, visualization, "PMS") + + elif cod == "LANDFIRE/Fire/PRS/v1_2_0": + dataset = ee.ImageCollection("LANDFIRE/Fire/PRS/v1_2_0") + visualization = { + "bands": ["PRS"] + } + Map.setCenter(-121.671, 40.699, 5) + Map.addLayer(dataset, visualization, "PRS") + + elif cod == "LANDFIRE/Fire/SClass/v1_4_0": + dataset = ee.ImageCollection("LANDFIRE/Fire/SClass/v1_4_0") + visualization = { + "bands": ["SClass"] + } + Map.setCenter(-121.671, 40.699, 5) + Map.addLayer(dataset, visualization, "SClass") + + elif cod == "LANDFIRE/Fire/VCC/v1_4_0": + dataset = ee.ImageCollection("LANDFIRE/Fire/VCC/v1_4_0") + visualization = { + "bands": ["VCC"] + } + Map.setCenter(-121.671, 40.699, 5) + Map.addLayer(dataset, visualization, "VCC") + + elif cod == "LANDFIRE/Fire/VDep/v1_4_0": + dataset = ee.ImageCollection("LANDFIRE/Fire/VDep/v1_4_0") + visualization = { + "bands": ["VDep"] + } + Map.setCenter(-121.671, 40.699, 5) + Map.addLayer(dataset, visualization, "VDep") + + elif cod == "LANDFIRE/Vegetation/BPS/v1_4_0": + dataset = ee.ImageCollection("LANDFIRE/Vegetation/BPS/v1_4_0") + visualization = { + "bands": ["BPS"] + } + Map.setCenter(-121.671, 40.699, 5) + Map.addLayer(dataset, visualization, "BPS") + + elif cod == "LANDFIRE/Vegetation/ESP/v1_2_0/AK": + dataset = ee.Image("LANDFIRE/Vegetation/ESP/v1_2_0/AK") + visualization = { + "bands": ["ESP"] + } + Map.setCenter(-151.011, 63.427, 8) + Map.addLayer(dataset, visualization, "ESP") + + elif cod == "LANDFIRE/Vegetation/ESP/v1_2_0/CONUS": + dataset = ee.Image("LANDFIRE/Vegetation/ESP/v1_2_0/CONUS") + visualization = { + "bands": ["ESP"] + } + Map.setCenter(-121.671, 40.699, 5) + Map.addLayer(dataset, visualization, "ESP") + + elif cod == "LANDFIRE/Vegetation/ESP/v1_2_0/HI": + dataset = ee.Image("LANDFIRE/Vegetation/ESP/v1_2_0/HI") + visualization = { + "bands": ["ESP"] + } + Map.setCenter(-155.3, 19.627, 8) + Map.addLayer(dataset, visualization, "ESP") + + elif cod == "LANDFIRE/Vegetation/EVC/v1_4_0": + dataset = ee.ImageCollection("LANDFIRE/Vegetation/EVC/v1_4_0") + visualization = { + "bands": ["EVC"] + } + Map.setCenter(-121.671, 40.699, 5) + Map.addLayer(dataset, visualization, "EVC") + + elif cod == "LANDFIRE/Vegetation/EVH/v1_4_0": + dataset = ee.ImageCollection("LANDFIRE/Vegetation/EVH/v1_4_0") + visualization = { + "bands": ["EVH"] + } + Map.setCenter(-121.671, 40.699, 5) + Map.addLayer(dataset, visualization, "EVH") + + elif cod == "LANDFIRE/Vegetation/EVT/v1_4_0": + dataset = ee.ImageCollection("LANDFIRE/Vegetation/EVT/v1_4_0") + visualization = { + "bands": ["EVT"] + } + Map.setCenter(-121.671, 40.699, 5) + Map.addLayer(dataset, visualization, "EVT") + + elif cod == "LANDSAT/GLS1975": + dataset = ee.ImageCollection("LANDSAT/GLS1975") + FalseColor = dataset.select(["30", "20", "10"]) + FalseColorVis = { + "gamma": 1.6 + } + Map.setCenter(44.517, 25.998, 5) + Map.addLayer(FalseColor, FalseColorVis, "False Color") + + elif cod == "LANDSAT/GLS2005": + dataset = ee.ImageCollection("LANDSAT/GLS2005") + trueColor321 = dataset.select(["30", "20", "10"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, {}, "True Color (321)") + + elif cod == "LANDSAT/GLS2005_L5": + dataset = ee.ImageCollection("LANDSAT/GLS2005_L5") + trueColor321 = dataset.select(["30", "20", "10"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, {}, "True Color (321)") + + elif cod == "LANDSAT/GLS2005_L7": + dataset = ee.ImageCollection("LANDSAT/GLS2005_L7") + trueColor321 = dataset.select(["30", "20", "10"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, {}, "True Color (321)") + + elif cod == "LANDSAT/LC08/C02/T1": + dataset = ee.ImageCollection("LANDSAT/LC08/C02/T1").filterDate("2017-01-01", "2017-12-31") + trueColor432 = dataset.select(["B4", "B3", "B2"]) + trueColor432Vis = { + "min": 0.0, + "max": 30000.0 + } + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") + + elif cod == "LANDSAT/LC08/C02/T1_L2": + dataset = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2").filterDate("2021-05-01", "2021-06-01") + def applyScaleFactors(image): + opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) + thermalBands = image.select("ST_B.*").multiply(0.00341802).add(149.0) + return image.addBands(opticalBands, None, True).addBands(thermalBands, None, True) + dataset = dataset.map(applyScaleFactors) + visualization = { + "bands": ["SR_B4", "SR_B3", "SR_B2"], + "min": 0.0, + "max": 0.3 + } + Map.setCenter(-114.2579, 38.9275, 8) + Map.addLayer(dataset, visualization, "True Color (432)") + + elif cod == "LANDSAT/LC08/C02/T1_RT": + dataset = ee.ImageCollection("LANDSAT/LC08/C02/T1_RT").filterDate("2017-01-01", "2017-12-31") + trueColor432 = dataset.select(["B4", "B3", "B2"]) + trueColor432Vis = { + "min": 0.0, + "max": 30000.0 + } + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") + + elif cod == "LANDSAT/LC08/C02/T1_RT_TOA": + dataset = ee.ImageCollection("LANDSAT/LC08/C02/T1_RT_TOA").filterDate("2017-01-01", "2017-12-31") + trueColor432 = dataset.select(["B4", "B3", "B2"]) + trueColor432Vis = { + "min": 0.0, + "max": 0.4 + } + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") + + elif cod == "LANDSAT/LC08/C02/T1_TOA": + dataset = ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA").filterDate("2017-01-01", "2017-12-31") + trueColor432 = dataset.select(["B4", "B3", "B2"]) + trueColor432Vis = { + "min": 0.0, + "max": 0.4} + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") + + elif cod == "LANDSAT/LC08/C02/T2": + dataset = ee.ImageCollection("LANDSAT/LC08/C02/T2").filterDate("2017-01-01", "2017-12-31") + trueColor432 = dataset.select(["B4", "B3", "B2"]) + trueColor432Vis = { + "min": 0.0, + "max": 30000.0 + } + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") + + elif cod == "LANDSAT/LC08/C02/T2_L2": + dataset = ee.ImageCollection("LANDSAT/LC08/C02/T2_L2").filterDate("2021-05-01", "2021-06-01") + def applyScaleFactors(image): + opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) + thermalBands = image.select("ST_B.*").multiply(0.00341802).add(149.0) + return image.addBands(opticalBands, None, True) .addBands(thermalBands, None, True) + dataset = dataset.map(applyScaleFactors) + visualization = { + "bands": ["SR_B4", "SR_B3", "SR_B2"], + "min": 0.0, + "max": 0.3 + } + Map.setCenter(-83, 24, 8) + Map.addLayer(dataset, visualization, "True Color (432)") + + elif cod == "LANDSAT/LC08/C02/T2_TOA": + dataset = ee.ImageCollection("LANDSAT/LC08/C02/T2_TOA").filterDate("2017-01-01", "2017-12-31") + trueColor432 = dataset.select(["B4", "B3", "B2"]) + trueColor432Vis = { + "min": 0.0, + "max": 0.4 + } + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") + + elif cod == "LANDSAT/LC09/C02/T1": + dataset = ee.ImageCollection("LANDSAT/LC09/C02/T1").filterDate("2022-01-01", "2022-02-01") + trueColor432 = dataset.select(["B4", "B3", "B2"]) + trueColor432Vis = { + "min": 0.0, + "max": 30000.0 + } + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") + + elif cod == "LANDSAT/LC09/C02/T1_L2": + dataset = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2").filterDate("2022-01-01", "2022-02-01") + def applyScaleFactors(image): + opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) + thermalBands = image.select("ST_B.*").multiply(0.00341802).add(149.0) + return image.addBands(opticalBands, None, True).addBands(thermalBands, None, True) + dataset = dataset.map(applyScaleFactors) + visualization = { + "bands": ["SR_B4", "SR_B3", "SR_B2"], + "min": 0.0, + "max": 0.3 + } + Map.setCenter(-114.2579, 38.9275, 8) + Map.addLayer(dataset, visualization, "True Color (432)") + + elif cod == "LANDSAT/LC09/C02/T1_TOA": + dataset = ee.ImageCollection("LANDSAT/LC09/C02/T1_TOA").filterDate("2022-01-01", "2022-02-01") + trueColor432 = dataset.select(["B4", "B3", "B2"]) + trueColor432Vis = { + "min": 0.0, + "max": 0.4} + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") + + elif cod == "LANDSAT/LC09/C02/T2": + dataset = ee.ImageCollection("LANDSAT/LC09/C02/T2").filterDate("2022-01-01", "2022-02-01") + trueColor432 = dataset.select(["B4", "B3", "B2"]) + trueColor432Vis = { + "min": 0.0, + "max": 30000.0} + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") + + elif cod == "LANDSAT/LC09/C02/T2_L2": + dataset = ee.ImageCollection("LANDSAT/LC09/C02/T2_L2").filterDate("2022-01-01", "2022-02-01") + def applyScaleFactors(image): + opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) + thermalBands = image.select("ST_B.*").multiply(0.00341802).add(149.0) + return image.addBands(opticalBands, None, True).addBands(thermalBands, None, True) + dataset = dataset.map(applyScaleFactors) + visualization = { + "bands": ["SR_B4", "SR_B3", "SR_B2"], + "min": 0.0, + "max": 0.3} + Map.setCenter(-83, 24, 8) + Map.addLayer(dataset, visualization, "True Color (432)") + + elif cod == "LANDSAT/LC09/C02/T2_TOA": + dataset = ee.ImageCollection("LANDSAT/LC09/C02/T2_TOA").filterDate("2022-01-01", "2022-02-01") + trueColor432 = dataset.select(["B4", "B3", "B2"]) + trueColor432Vis = { + "min": 0.0, + "max": 0.4} + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor432, trueColor432Vis, "True Color (432)") + + elif cod == "LANDSAT/LE07/C02/T1": + dataset = ee.ImageCollection("LANDSAT/LE07/C02/T1").filterDate("1999-01-01", "2002-12-31") + trueColor321 = dataset.select(["B3", "B2", "B1"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, {}, "True Color (321)") + + elif cod == "LANDSAT/LE07/C02/T1_L2": + dataset = ee.ImageCollection("LANDSAT/LE07/C02/T1_L2").filterDate("2017-06-01", "2017-07-01") + def applyScaleFactors(image): + opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) + thermalBand = image.select("ST_B6").multiply(0.00341802).add(149.0) + return image.addBands(opticalBands, None, True).addBands(thermalBand, None, True) + dataset = dataset.map(applyScaleFactors) + visualization = { + "bands": ["SR_B3", "SR_B2", "SR_B1"], + "min": 0.0, + "max": 0.3} + Map.setCenter(-114.2579, 38.9275, 8) + Map.addLayer(dataset, visualization, "True Color (321)") + + elif cod == "LANDSAT/LE07/C02/T1_RT": + dataset = ee.ImageCollection("LANDSAT/LE07/C02/T1_RT").filterDate("1999-01-01", "2002-12-31") + trueColor321 = dataset.select(["B3", "B2", "B1"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, {}, "True Color (321)") + + elif cod == "LANDSAT/LE07/C02/T1_RT_TOA": + dataset = ee.ImageCollection("LANDSAT/LE07/C02/T1_RT_TOA").filterDate("1999-01-01", "2002-12-31") + trueColor321 = dataset.select(["B3", "B2", "B1"]) + trueColor321Vis = { + "min": 0.0, + "max": 0.4, + "gamma": 1.2} + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") + + elif cod == "LANDSAT/LE07/C02/T1_TOA": + dataset = ee.ImageCollection("LANDSAT/LE07/C02/T1_TOA").filterDate("1999-01-01", "2002-12-31") + trueColor321 = dataset.select(["B3", "B2", "B1"]) + trueColor321Vis = { + "min": 0.0, + "max": 0.4, + "gamma": 1.2} + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") + + elif cod == "LANDSAT/LE07/C02/T2": + dataset = ee.ImageCollection("LANDSAT/LE07/C02/T2").filterDate("1999-01-01", "2002-12-31") + trueColor321 = dataset.select(["B3", "B2", "B1"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, {}, "True Color (321)") + + elif cod == "LANDSAT/LE07/C02/T2_L2": + dataset = ee.ImageCollection("LANDSAT/LE07/C02/T2_L2").filterDate("2017-06-01", "2017-07-01") + def applyScaleFactors(image): + opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) + thermalBand = image.select("ST_B6").multiply(0.00341802).add(149.0) + return image.addBands(opticalBands, None, True).addBands(thermalBand, None, True) + dataset = dataset.map(applyScaleFactors) + visualization = { + "bands": ["SR_B3", "SR_B2", "SR_B1"], + "min": 0.0, + "max": 0.3} + Map.setCenter(-83, 24, 8) + Map.addLayer(dataset, visualization, "True Color (321)") + + elif cod == "LANDSAT/LE07/C02/T2_TOA": + dataset = ee.ImageCollection("LANDSAT/LE07/C02/T2_TOA").filterDate("1999-01-01", "2002-12-31") + trueColor321 = dataset.select(["B3", "B2", "B1"]) + trueColor321Vis = { + "min": 0.0, + "max": 0.4, + "gamma": 1.2} + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") + + elif cod == "LANDSAT/LM01/C02/T1": + dataset = ee.ImageCollection("LANDSAT/LM01/C02/T1").filterDate("1974-01-01", "1978-12-31") + nearInfrared321 = dataset.select(["B6", "B5", "B4"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") + + elif cod == "LANDSAT/LM01/C02/T2": + dataset = ee.ImageCollection("LANDSAT/LM01/C02/T2").filterDate("1974-01-01", "1978-12-31") + nearInfrared321 = dataset.select(["B6", "B5", "B4"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") + + elif cod == "LANDSAT/LM02/C02/T1": + dataset = ee.ImageCollection("LANDSAT/LM02/C02/T1").filterDate("1978-01-01", "1980-12-31") + nearInfrared321 = dataset.select(["B6", "B5", "B4"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") + + elif cod == "LANDSAT/LM02/C02/T2": + dataset = ee.ImageCollection("LANDSAT/LM02/C02/T2").filterDate("1978-01-01", "1980-12-31") + nearInfrared321 = dataset.select(["B6", "B5", "B4"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") + + elif cod == "LANDSAT/LM03/C02/T1": + dataset = ee.ImageCollection("LANDSAT/LM03/C02/T1").filterDate("1978-01-01", "1980-12-31") + nearInfrared321 = dataset.select(["B6", "B5", "B4"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") + + elif cod == "LANDSAT/LM03/C02/T2": + dataset = ee.ImageCollection("LANDSAT/LM03/C02/T2").filterDate("1978-01-01", "1980-12-31") + nearInfrared321 = dataset.select(["B6", "B5", "B4"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") + + elif cod == "LANDSAT/LM04/C02/T1": + dataset = ee.ImageCollection("LANDSAT/LM04/C02/T1").filterDate("1989-01-01", "1992-12-31") + nearInfrared321 = dataset.select(["B3", "B2", "B1"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") + + elif cod == "LANDSAT/LM04/C02/T2": + dataset = ee.ImageCollection("LANDSAT/LM04/C02/T2").filterDate("1989-01-01", "1992-12-31") + nearInfrared321 = dataset.select(["B3", "B2", "B1"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") + + elif cod == "LANDSAT/LM05/C02/T1": + dataset = ee.ImageCollection("LANDSAT/LM05/C02/T1").filterDate("1985-01-01", "1989-12-31") + nearInfrared321 = dataset.select(["B3", "B2", "B1"]) + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(nearInfrared321, {}, "Near Infrared (321)") + + elif cod == "LANDSAT/LM05/C02/T2": + dataset = ee.ImageCollection("LANDSAT/LM05/C02/T2").filterDate("1985-01-01", "1989-12-31") + nearInfrared321 = dataset.select(["B3", "B2", "B1"]) + nearInfrared321Vis = {} + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(nearInfrared321, nearInfrared321Vis, "Near Infrared (321)") + + elif cod == "LANDSAT/LT04/C02/T1": + dataset = ee.ImageCollection("LANDSAT/LT04/C02/T1").filterDate("1989-01-01", "1992-12-31") + trueColor321 = dataset.select(["B3", "B2", "B1"]) + trueColor321Vis = {} + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") + + elif cod == "LANDSAT/LT04/C02/T1_L2": + dataset = ee.ImageCollection("LANDSAT/LT04/C02/T1_L2").filterDate("1990-04-01", "1990-05-01") + def applyScaleFactors(image): + opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) + thermalBand = image.select("ST_B6").multiply(0.00341802).add(149.0) + return image.addBands(opticalBands, None, True).addBands(thermalBand, None, True) + dataset = dataset.map(applyScaleFactors) + visualization = { + "bands": ["SR_B3", "SR_B2", "SR_B1"], + "min": 0.0, + "max": 0.3, + } + Map.setCenter(15, 53, 8) + Map.addLayer(dataset, visualization, "True Color (321)") + + elif cod == "LANDSAT/LT04/C02/T1_TOA": + dataset = ee.ImageCollection("LANDSAT/LT04/C02/T1_TOA").filterDate("1989-01-01", "1992-12-31") + trueColor321 = dataset.select(["B3", "B2", "B1"]) + trueColor321Vis = { + "min": 0.0, + "max": 0.4, + "gamma": 1.2, + } + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") + + elif cod == "LANDSAT/LT04/C02/T2": + dataset = ee.ImageCollection("LANDSAT/LT04/C02/T2").filterDate("1989-01-01", "1992-12-31") + trueColor321 = dataset.select(["B3", "B2", "B1"]) + trueColor321Vis = {} + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") + + elif cod == "LANDSAT/LT04/C02/T2_L2": + dataset = ee.ImageCollection("LANDSAT/LT04/C02/T2_L2").filterDate("1990-04-01", "1990-05-01") + def applyScaleFactors(image): + opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) + thermalBand = image.select("ST_B6").multiply(0.00341802).add(149.0) + return image.addBands(opticalBands, None, True).addBands(thermalBand, None, True) + dataset = dataset.map(applyScaleFactors) + visualization = { + "bands": ["SR_B3", "SR_B2", "SR_B1"], + "min": 0.0, + "max": 0.3, + } + Map.setCenter(-83, 24, 8) + Map.addLayer(dataset, visualization, "True Color (321)") + + elif cod == "LANDSAT/LT04/C02/T2_TOA": + dataset = ee.ImageCollection("LANDSAT/LT04/C02/T2_TOA").filterDate("1989-01-01", "1992-12-31") + trueColor321 = dataset.select(["B3", "B2", "B1"]) + trueColor321Vis = { + "min": 0.0, + "max": 0.4, + "gamma": 1.2, + } + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") + + elif cod == "LANDSAT/LT05/C02/T1": + dataset = ee.ImageCollection("LANDSAT/LT05/C02/T1").filterDate("2011-01-01", "2011-12-31") + trueColor321 = dataset.select(["B3", "B2", "B1"]) + trueColor321Vis = {} + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") + + elif cod == "LANDSAT/LT05/C02/T1_L2": + dataset = ee.ImageCollection("LANDSAT/LT05/C02/T1_L2").filterDate("2000-06-01", "2000-07-01") + def applyScaleFactors(image): + opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) + thermalBand = image.select("ST_B6").multiply(0.00341802).add(149.0) + return image.addBands(opticalBands, None, True).addBands(thermalBand, None, True) + dataset = dataset.map(applyScaleFactors) + visualization = { + "bands": ["SR_B3", "SR_B2", "SR_B1"], + "min": 0.0, + "max": 0.3, + } + Map.setCenter(-114.2579, 38.9275, 8) + Map.addLayer(dataset, visualization, "True Color (321)") + + elif cod == "LANDSAT/LT05/C02/T1_TOA": + dataset = ee.ImageCollection("LANDSAT/LT05/C02/T1_TOA").filterDate("2011-01-01", "2011-12-31") + trueColor321 = dataset.select(["B3", "B2", "B1"]) + trueColor321Vis = { + "min": 0.0, + "max": 0.4, + "gamma": 1.2, + } + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") + + elif cod == "LANDSAT/LT05/C02/T2": + dataset = ee.ImageCollection("LANDSAT/LT05/C02/T2").filterDate("2011-01-01", "2011-12-31") + trueColor321 = dataset.select(["B3", "B2", "B1"]) + trueColor321Vis = {} + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") + + elif cod == "LANDSAT/LT05/C02/T2_L2": + dataset = ee.ImageCollection("LANDSAT/LT05/C02/T2_L2").filterDate("2000-06-01", "2000-07-01") + def applyScaleFactors(image): + opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2) + thermalBand = image.select("ST_B6").multiply(0.00341802).add(149.0) + return image.addBands(opticalBands, None, True).addBands(thermalBand, None, True) + dataset = dataset.map(applyScaleFactors) + visualization = { + "bands": ["SR_B3", "SR_B2", "SR_B1"], + "min": 0.0, + "max": 0.3, + } + Map.setCenter(-83, 24, 8) + Map.addLayer(dataset, visualization, "True Color (321)") + + elif cod == "LANDSAT/LT05/C02/T2_TOA": + dataset = ee.ImageCollection("LANDSAT/LT05/C02/T2_TOA").filterDate("2011-01-01", "2011-12-31") + trueColor321 = dataset.select(["B3", "B2", "B1"]) + trueColor321Vis = { + "min": 0.0, + "max": 0.4, + "gamma": 1.2, + } + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(trueColor321, trueColor321Vis, "True Color (321)") + + elif cod == "LANDSAT/MANGROVE_FORESTS": + dataset = ee.ImageCollection("LANDSAT/MANGROVE_FORESTS") + mangrovesVis = { + "min": 0, + "max": 1.0, + "palette": ["d40115"], + } + Map.setCenter(-44.5626, -2.0164, 9) + Map.addLayer(dataset, mangrovesVis, "Mangroves") + + elif cod == "LARSE/GEDI/GEDI02_A_002/GEDI02_A_2021244154857_O15413_04_T05622_02_003_02_V002": + dataset = ee.FeatureCollection("LARSE/GEDI/GEDI02_A_002/GEDI02_A_2021244154857_O15413_04_T05622_02_003_02_V002") + dataset = dataset.style({"color": "black", "pointSize": 1}) + Map.setCenter(-64.88, -31.77, 15) + Map.addLayer(dataset) + + elif cod == "LARSE/GEDI/GEDI02_A_002_INDEX": + rectangle = ee.Geometry.Rectangle([-111.22, 24.06, -6.54, 51.9]) + filter_index = ee.FeatureCollection("LARSE/GEDI/GEDI02_A_002_INDEX").filter("time_start > 2020-10-10T15:57:18Z" & "time_end < 2020-10-11T01:20:45Z").filterBounds(rectangle) + Map.addLayer(filter_index) + + elif cod == "LARSE/GEDI/GEDI02_A_002_MONTHLY": + qualityMask = lambda im: im.updateMask(im.select("quality_flag").eq(1)).updateMask(im.select("degrade_flag").eq(0)) + dataset = ee.ImageCollection("LARSE/GEDI/GEDI02_A_002_MONTHLY").map(qualityMask).select("rh98") + gediVis = { + "min": 1, + "max": 60, + "palette": "darkred,red,orange,green,darkgreen", + } + Map.setCenter(-74.803466, -9.342209, 10) + Map.addLayer(dataset, gediVis, "rh98") + + elif cod == "LARSE/GEDI/GEDI02_B_002/GEDI02_B_2021043114136_O12295_03_T07619_02_003_01_V002": + dataset = ee.FeatureCollection("LARSE/GEDI/GEDI02_B_002/GEDI02_B_2021043114136_O12295_03_T07619_02_003_01_V002") + Map.setCenter(12.60033, 51.01051, 14) + Map.addLayer(dataset) + + elif cod == "LARSE/GEDI/GEDI02_B_002_INDEX": + rectangle = ee.Geometry.Rectangle([-111.22, 24.06, -6.54, 51.9]) + filter_index = ee.FeatureCollection("LARSE/GEDI/GEDI02_B_002_INDEX").filter("time_start > 2020-10-10T15:57:18Z" & "time_end < 2020-10-11T01:20:45Z").filterBounds(rectangle) + Map.addLayer(filter_index) + + elif cod == "LARSE/GEDI/GEDI02_B_002_MONTHLY": + qualityMask = lambda im: im.updateMask(im.select("l2b_quality_flag").eq(1)).updateMask(im.select("degrade_flag").eq(0)) + dataset = ee.ImageCollection("LARSE/GEDI/GEDI02_B_002_MONTHLY").map(qualityMask).select("solar_elevation") + gediVis = { + "min": 1, + "max": 60, + "palette": "red, green, blue", + } + Map.setCenter(12.60033, 51.01051, 12) + Map.addLayer(dataset, gediVis, "Solar Elevation") + + elif cod == "LARSE/GEDI/GEDI04_A_002/GEDI04_A_2022157233128_O19728_03_T11129_02_003_01_V002": + dataset = ee.FeatureCollection("LARSE/GEDI/GEDI04_A_002/GEDI04_A_2022157233128_O19728_03_T11129_02_003_01_V002") + Map.setCenter(-94.77616, 38.9587, 14) + Map.addLayer(dataset) + + elif cod == "LARSE/GEDI/GEDI04_A_002_INDEX": + rectangle = ee.Geometry.Rectangle([-111.22, 24.06, -6.54, 51.9]) + filter_index = ee.FeatureCollection("LARSE/GEDI/GEDI04_A_002_INDEX").filter("time_start > 2020-10-10T15:57:18Z" & "time_end < 2020-10-11T01:20:45Z").filterBounds(rectangle) + Map.addLayer(filter_index) + + elif cod == "LARSE/GEDI/GEDI04_A_002_MONTHLY": + qualityMask = lambda im : im.updateMask(im.select("l4_quality_flag").eq(1)).updateMask(im.select("degrade_flag").eq(0)) + dataset = ee.ImageCollection("LARSE/GEDI/GEDI04_A_002_MONTHLY").map(qualityMask).select("solar_elevation") + gediVis = { + "min": 1, + "max": 60, + "palette": "red, green, blue", + } + Map.setCenter(5.0198, 51.7564, 12) + Map.addLayer(dataset, gediVis, "Solar Elevation") + + elif cod == "LARSE/GEDI/GEDI04_B_002": + l4b = ee.Image("LARSE/GEDI/GEDI04_B_002") + Map.addLayer( + l4b.select("MU"), {"min": 10, "max": 250, "palette": "440154,414387,2a788e,23a884,7ad151,fde725"}, "Mean Biomass" + ) + Map.addLayer( l4b.select("SE"), {"min": 10, "max": 50, "palette": "000004,3b0f6f,8c2981,dd4a69,fe9f6d,fcfdbf"}, "Standard Error" + ) + + elif cod == "MERIT/DEM/v1_0_3": + dataset = ee.Image("MERIT/DEM/v1_0_3") + visualization = { + "bands": ["dem"], + "min": -3, + "max": 18, + "palette": ["000000", "478FCD", "86C58E", "AFC35E", "8F7131", + "B78D4F", "E2B8A6", "FFFFFF"] + } + Map.setCenter(90.301, 23.052, 10) + Map.addLayer(dataset, visualization, "Elevation") + + elif cod == "MERIT/Hydro/v1_0_1": + dataset = ee.Image("MERIT/Hydro/v1_0_1") + visualization = { + "bands": ["viswth"], + } + Map.setCenter(90.301, 23.052, 10) + Map.addLayer(dataset, visualization, "River width") + + elif cod == "MERIT/Hydro_reduced/v1_0_1": + dataset = ee.Image("MERIT/Hydro_reduced/v1_0_1") + visualization = { + "bands": "wth", + "min": 0, + "max": 400 + } + Map.setCenter(90.301, 23.052, 10) + Map.addLayer(dataset, visualization, "River width") + + elif cod == "MODIS/006/MCD19A2_GRANULES": + collection = ee.ImageCollection("MODIS/006/MCD19A2_GRANULES").select("Optical_Depth_047").filterDate("2019-01-01", "2019-01-15") + band_viz = { + "min": 0, + "max": 500, + "palette": ["black", "blue", "purple", "cyan", "green", "yellow", "red"] + } + Map.addLayer(collection.mean(), band_viz, "Optical Depth 047") + Map.setCenter(76, 13, 6) + + elif cod == "MODIS/006/MOD10A1": + dataset = ee.ImageCollection("MODIS/006/MOD10A1").filter(ee.Filter.date("2018-01-01", "2018-05-01")) + snowCover = dataset.select("NDSI_Snow_Cover") + snowCoverVis = { + "min": 0.0, + "max": 100.0, + "palette": ["black", "0dffff", "0524ff", "ffffff"], + } + Map.setCenter(-41.13, 76.35, 2) + Map.addLayer(snowCover, snowCoverVis, "Snow Cover") + + elif cod == "MODIS/006/MOD16A2": + dataset = ee.ImageCollection("MODIS/006/MOD16A2").filter(ee.Filter.date("2018-01-01", "2018-05-01")) + evapotranspiration = dataset.select("ET") + evapotranspirationVis = { + "min": 0.0, + "max": 300.0, + "palette": [ + "ffffff", "fcd163", "99b718", "66a000", "3e8601", "207401", "056201", + "004c00", "011301" + ], + } + Map.setCenter(6.746, 46.529, 2) + Map.addLayer(evapotranspiration, evapotranspirationVis, "Evapotranspiration") + + elif cod == "MODIS/006/MOD17A2H": + dataset = ee.ImageCollection("MODIS/006/MOD17A2H").filter(ee.Filter.date("2018-01-01", "2018-05-01")) + gpp = dataset.select("Gpp") + gppVis = { + "min": 0.0, + "max": 600.0, + "palette": ["bbe029", "0a9501", "074b03"], + } + Map.setCenter(6.746, 46.529, 2) + Map.addLayer(gpp, gppVis, "GPP") + + elif cod == "MODIS/006/MOD44B": + dataset = ee.ImageCollection("MODIS/006/MOD44B") + visualization = { + "bands": ["Percent_Tree_Cover"], + "min": 0.0, + "max": 100.0, + "palette": ["bbe029", "0a9501", "074b03"] + } + Map.centerObject(dataset) + Map.addLayer(dataset, visualization, "Percent Tree Cover") + + elif cod == "MODIS/006/MOD44W": + dataset = ee.ImageCollection("MODIS/006/MOD44W").filter(ee.Filter.date("2015-01-01", "2015-05-01")) + waterMask = dataset.select("water_mask") + waterMaskVis = { + "min": 0.0, + "max": 1.0, + "palette": ["bcba99", "2d0491"], + } + Map.setCenter(6.746, 46.529, 2) + Map.addLayer(waterMask, waterMaskVis, "Water Mask") + + elif cod == "MODIS/006/MOD44W": + dataset = ee.ImageCollection("MODIS/006/MOD44W").filter(ee.Filter.date("2015-01-01", "2015-05-01")) + waterMask = dataset.select("water_mask") + waterMaskVis = { + "min": 0.0, + "max": 1.0, + "palette": ["bcba99", "2d0491"], + } + Map.setCenter(6.746, 46.529, 2) + Map.addLayer(waterMask, waterMaskVis, "Water Mask") + + elif cod == "MODIS/006/MODOCGA": + dataset = ee.ImageCollection("MODIS/006/MODOCGA").filter(ee.Filter.date("2018-01-01", "2018-05-01")) + FalseColor = dataset.select(["sur_refl_b11", "sur_refl_b10", "sur_refl_b09"]) + FalseColorVis = { + "min": 0.0, + "max": 2000.0} + Map.setCenter(6.746, 46.529, 2) + Map.addLayer(FalseColor, FalseColorVis, "False Color") + + elif cod == "MODIS/006/MYD10A1": + dataset = ee.ImageCollection("MODIS/006/MYD10A1").filter(ee.Filter.date("2018-01-01", "2018-05-01")) + snowCover = dataset.select("NDSI_Snow_Cover") + snowCoverVis = { + "min": 0.0, + "max": 100.0, + "palette": ["black", "0dffff", "0524ff", "ffffff"], + } + Map.setCenter(-38.13, 40, 2) + Map.addLayer(snowCover, snowCoverVis, "Snow Cover") + + elif cod == "MODIS/006/MYD17A2H": + dataset = ee.ImageCollection("MODIS/006/MYD17A2H").filter(ee.Filter.date("2018-01-01", "2018-05-01")) + gpp = dataset.select("Gpp") + gppVis = { + "min": 0.0, + "max": 600.0, + "palette": ["bbe029", "0a9501", "074b03"], + } + Map.setCenter(6.746, 46.529, 2) + Map.addLayer(gpp, gppVis, "GPP") + + elif cod == "MODIS/006/MYDOCGA": + dataset = ee.ImageCollection("MODIS/006/MYDOCGA").filter(ee.Filter.date("2018-01-01", "2018-05-01")) + FalseColor = dataset.select(["sur_refl_b11", "sur_refl_b10", "sur_refl_b09"]) + FalseColorVis = { + "min": 0.0, + "max": 2000.0, + } + Map.setCenter(6.746, 46.529, 2) + Map.addLayer(FalseColor, FalseColorVis, "False Color") + + elif cod == "MODIS/061/MCD12Q1": + dataset = ee.ImageCollection("MODIS/061/MCD12Q1") + igbpLandCover = dataset.select("LC_Type1") + igbpLandCoverVis = { + "min": 1.0, + "max": 17.0, + "palette": [ + "05450a", "086a10", "54a708", "78d203", "009900", "c6b044", "dcd159", + "dade48", "fbff13", "b6ff05", "27ff87", "c24f44", "a5a5a5", "ff6d4c", + "69fff8", "f9ffa4", "1c0dff" + ], + } + Map.setCenter(6.746, 46.529, 6) + Map.addLayer(igbpLandCover, igbpLandCoverVis, "IGBP Land Cover") + + elif cod == "MODIS/061/MCD12Q2": + dataset = ee.ImageCollection("MODIS/061/MCD12Q2").filter(ee.Filter.date("2001-01-01", "2002-01-01")) + vegetationPeak = dataset.select("Peak_1") + vegetationPeakVis = { + "min": 11400, + "max": 11868, + "palette": ["0f17ff", "b11406", "f1ff23"], + } + Map.setCenter(6.746, 46.529, 2) + Map.addLayer(vegetationPeak, vegetationPeakVis, "Vegetation Peak 2001") + + elif cod == "MODIS/061/MCD15A3H": + dataset = ee.ImageCollection("MODIS/061/MCD15A3H") + defaultVisualization = dataset.first().select("Fpar") + defaultVisualizationVis = { + "min": 0.0, + "max": 100.0, + "palette": ["e1e4b4", "999d60", "2ec409", "0a4b06"], + } + Map.setCenter(6.746, 46.529, 6) + Map.addLayer( + defaultVisualization, defaultVisualizationVis, "Default visualization") + + elif cod == "MODIS/061/MCD18C2": + dataset = ee.ImageCollection("MODIS/061/MCD18C2").filter(ee.Filter.date("2001-01-01", "2001-02-01")) + gmt_1200_par = dataset.select("GMT_1200_PAR") + gmt_1200_par_vis = { + "min": -236, + "max": 316, + "palette": ["0f17ff", "b11406", "f1ff23"], + } + Map.setCenter(6.746, 46.529, 2) + Map.addLayer(gmt_1200_par, gmt_1200_par_vis,"Total PAR at GMT 12:00") + + elif cod == "COPERNICUS/CORINE/V20/100m": + dataset = ee.Image('COPERNICUS/CORINE/V20/100m/2012') + landCover = dataset.select('landcover') + Map.setCenter(16.436, 39.825, 6) + Map.addLayer(landCover, {}, 'Land Cover') + + elif cod == "LANDSAT/GLS1975_MOSAIC": + dataset = ee.ImageCollection('LANDSAT/GLS1975_MOSAIC') + falseColor = dataset.select(['30', '20', '10']) + falseColorVis = { + "gamma": 1.6, + } + Map.setCenter(-72.882406,5.181746, 5); + Map.addLayer(falseColor, falseColorVis, 'False Color') + + elif cod == "LANDSAT/LC08/C01/T1_8DAY_BAI": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_8DAY_BAI').filterDate('2017-01-01', '2017-12-31') + scaled = dataset.select('BAI') + scaledVis = { + "min": 0.0, + "max": 100.0, + } + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(scaled, scaledVis, 'Scaled') + + elif cod == "LANDSAT/LC08/C01/T1_8DAY_EVI": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_8DAY_EVI').filterDate('2017-01-01', '2017-12-31') + colorized = dataset.select('EVI') + colorizedVis = { + "min": 0.0, + "max": 1.0, + "palette": [ + 'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901', + '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01', + '012E01', '011D01', '011301'] + } + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(colorized, colorizedVis, 'Colorized') + + elif cod == "LANDSAT/LC08/C01/T1_8DAY_NDSI": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_8DAY_NDSI').filterDate('2017-01-01', '2017-12-31') + colorized = dataset.select('NDSI') + colorizedVis = { + "palette": ['000088', '0000FF', '8888FF', 'FFFFFF'], + } + Map.setCenter(-72.882406,5.181746, 6); + Map.addLayer(colorized, colorizedVis, 'Colorized') + + elif cod == "LANDSAT/LC08/C01/T1_8DAY_NDVI": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_8DAY_NDVI').filterDate('2017-01-01', '2017-12-31') + colorized = dataset.select('NDVI') + colorizedVis = { + "min": 0.0, + "max": 1.0, + "palette": [ + 'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901', + '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01', + '012E01', '011D01', '011301']} + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(colorized, colorizedVis, 'Colorized') + + elif cod == "LANDSAT/LC08/C01/T1_8DAY_NDWI": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_8DAY_NDWI').filterDate('2017-01-01', '2017-12-31') + colorized = dataset.select('NDWI') + colorizedVis = { + "min": 0.0, + "max": 1.0, + "palette": ['0000ff', '00ffff', 'ffff00', 'ff0000', 'ffffff'], + }; + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(colorized, colorizedVis, 'Colorized') + + elif cod == "LANDSAT/LC08/C01/T1_8DAY_RAW": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_8DAY_RAW').filterDate('2017-01-01', '2017-12-31') + visParams = { + "min": 0, + "max": 20000, + "gamma": 1.2, + "bands": ['B4', 'B3', 'B2'], + } + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(dataset, visParams, 'LANDSAT/LC08/C01/T1_8DAY_RAW') + + elif cod == "LANDSAT/LC08/C01/T1_8DAY_TOA": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_8DAY_TOA').filterDate('2017-01-01', '2017-12-31') + trueColor = dataset.select(['B4', 'B3', 'B2']) + trueColorVis = { + "min": 0, + "max": 0.4, + "gamma": 1.2, + } + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(trueColor, trueColorVis, 'True Color (432)') + + elif cod == "LANDSAT/LC08/C01/T1_32DAY_BAI": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_BAI').filterDate('2017-01-01', '2017-12-31') + scaled = dataset.select('BAI') + scaledVis = { + "min": 0.0, + "max": 100.0, + } + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(scaled, scaledVis, 'Scaled') + + elif cod == "LANDSAT/LC08/C01/T1_32DAY_EVI": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_EVI').filterDate('2017-01-01', '2017-12-31') + colorized = dataset.select('EVI') + colorizedVis = { + "min": 0.0, + "max": 1.0, + "palette": [ + 'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901', + '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01', + '012E01', '011D01', '011301'] + } + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(colorized, colorizedVis, 'Colorized') + + elif cod == "LANDSAT/LC08/C01/T1_32DAY_NBRT": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_NBRT').filterDate('2017-01-01', '2017-12-31') + colorized = dataset.select('NBRT') + colorizedVis = { + "min": 0.9, + "max": 1.0, + "palette": ['000000', 'FFFFFF'], + } + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(colorized, colorizedVis, 'Colorized') + + elif cod == "LANDSAT/LC08/C01/T1_32DAY_NDSI": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_NDSI').filterDate('2017-01-01', '2017-12-31') + colorized = dataset.select('NDSI') + colorizedVis = { + "palette": ['000088', '0000FF', '8888FF', 'FFFFFF'], + }; + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(colorized, colorizedVis, 'Colorized') + + elif cod == "LANDSAT/LC08/C01/T1_32DAY_NDVI": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_NDVI').filterDate('2017-01-01', '2017-12-31') + colorized = dataset.select('NDVI') + colorizedVis = { + "min": 0.0, + "max": 1.0, + "palette": [ + 'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901', + '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01', + '012E01', '011D01', '011301'] + } + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(colorized, colorizedVis, 'Colorized') + + elif cod == "LANDSAT/LC08/C01/T1_32DAY_NDWI": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_NDWI').filterDate('2017-01-01', '2017-12-31') + colorized = dataset.select('NDWI'); + colorizedVis = { + "min": 0.0, + "max": 1.0, + "palette": ['0000ff', '00ffff', 'ffff00', 'ff0000', 'ffffff'] + } + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(colorized, colorizedVis, 'Colorized') + + elif cod == "LANDSAT/LC08/C01/T1_32DAY_RAW": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_RAW').filterDate('2017-01-01', '2017-12-31') + visParams = { + "min": 0, + "max": 20000, + "gamma": 1.2, + "bands": ['B4', 'B3', 'B2'] + } + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(dataset, visParams, 'LANDSAT/LC08/C01/T1_32DAY_RAW') + + elif cod == "LANDSAT/LC08/C01/T1_32DAY_TOA": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_32DAY_TOA').filterDate('2017-01-01', '2017-12-31') + trueColor = dataset.select(['B4', 'B3', 'B2']) + trueColorVis = { + "min": 0, + "max": 0.4, + "gamma": 1.2, + } + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(trueColor, trueColorVis, 'True Color (432)') + + elif cod == "LANDSAT/LC08/C01/T1_ANNUAL_BAI": + dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_ANNUAL_BAI') \ + .filterDate('2017-01-01', '2017-12-31') + scaled = dataset.select('BAI') + scaledVis = { + "min": 0.0, + "max": 100.0, + } + Map.setCenter(-72.882406,5.181746, 6) + Map.addLayer(scaled, scaledVis, 'Scaled') + + elif cod == "NOAA/DMSP-OLS/CALIBRATED_LIGHTS_V4": + dataset = ee.ImageCollection('NOAA/DMSP-OLS/CALIBRATED_LIGHTS_V4')\ + .filterDate('2010-01-01', '2010-12-31') + nighttimeLights = dataset.select('avg_vis') + nighttimeLightsVis = { + "min": 3.0, + "max": 60.0, + } + Map.setCenter(7.82, 49.1, 4) + Map.addLayer(nighttimeLights, nighttimeLightsVis, 'Nighttime Lights') + + elif cod == "NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG": + dataset = ee.ImageCollection('NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG').filterDate('2022-01-01', '2023-12-31') + nighttime = dataset.select('avg_rad') + nighttimeVis = { + "min": 0.0, + "max": 60.0, + } + Map.setCenter(67.1056, 24.8904, 8) + Map.addLayer(nighttime, nighttimeVis, 'Nighttime')