Spaces:
Sleeping
Sleeping
from django.shortcuts import render,redirect | |
import geopandas as gpd | |
from folium import GeoJson | |
import json | |
import geemap | |
import os | |
# generic base view | |
from django.views.generic import TemplateView | |
# folium | |
import folium | |
from folium import plugins | |
# gee | |
import ee | |
#--- | |
from .forms import * | |
from django.http import HttpResponse | |
from django.shortcuts import render | |
from django.http import JsonResponse | |
from .gee import type_map, data_gee | |
from django.contrib.auth.decorators import login_required | |
import geemap.foliumap as geemap | |
from django.views.decorators.csrf import csrf_exempt | |
from django.contrib.auth import login as auth_login | |
from django.urls import reverse_lazy | |
from django.views.generic import UpdateView | |
from django.shortcuts import render | |
import ee | |
import pandas as pd | |
import numpy as np | |
from scipy import optimize | |
import matplotlib.pyplot as plt | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from scipy import optimize | |
from django.shortcuts import render | |
import ee | |
import pandas as pd | |
import numpy as np | |
from scipy import optimize | |
from django.http import JsonResponse | |
import plotly.graph_objs as go | |
from datetime import datetime | |
#e.Authenticate() | |
## Credenciales de EE | |
# D:\Desktop\Django_app_12_sep-2023\gee\ee-muzzamil.json | |
def index(request): | |
print("I am in index") | |
return render (request, "index.html") | |
# ee.Initialize() | |
def home(request): | |
template_name = 'home.html' | |
if request.method == 'GET': | |
selected_dataset = request.GET.get('dataset') | |
selected_shapefile = request.GET.get('shapefile') | |
selected_date_range_From = request.GET.get('dateRangeFrom') | |
selected_date_range_To = request.GET.get('dateRangeTo') | |
print(f'Selected Dataset: {selected_dataset}') | |
print(f'Selected Dataset: {selected_shapefile}') | |
figure = folium.Figure() | |
m = folium.Map( | |
location=[25.5973518, 65.54495724], | |
zoom_start=7, | |
) | |
m.add_to(figure) | |
#----------------------------------------------------------------------------------------------------------------------# | |
if selected_dataset == "Modis": | |
if selected_shapefile != None: | |
shapefile_path = ('C:\\Users\\piv\\Desktop\\y\\media\\shp') | |
roi_gdf = gpd.read_file(shapefile_path) | |
roi_geojson = roi_gdf.to_crs("EPSG:4326").to_json() | |
# Create a folium GeoJson layer for visualization | |
roi_geojson_layer = folium.GeoJson(roi_geojson, name='ROI GeoJSON') | |
roi_geojson_layer.add_to(m) | |
# Convert the GeoJSON content to Earth Engine object | |
ee_object = geemap.geojson_to_ee(json.loads(roi_geojson)) | |
if selected_date_range_From != None: | |
if selected_date_range_To != None: | |
print("I am here") | |
F = selected_date_range_From | |
T = selected_date_range_To | |
print(F,"==>",T) | |
dataset = ee.ImageCollection('MODIS/006/MOD13Q1').filter(ee.Filter.date(F, T)).filterBounds(ee_object) | |
modisndvi = dataset.select('NDVI') | |
modisndvi = modisndvi.clip(ee_object) | |
vis_paramsNDVI = { | |
'min': 0, | |
'max': 9000, | |
'palette': ['FE8374', 'C0E5DE', '3A837C', '034B48']} | |
map_id_dict = ee.Image(modisndvi).getMapId(vis_paramsNDVI) | |
folium.raster_layers.TileLayer( | |
tiles=map_id_dict['tile_fetcher'].url_format, | |
attr='Google Earth Engine', | |
name='NDVI', | |
overlay=True, | |
control=True | |
).add_to(m) | |
m.add_child(folium.LayerControl()) | |
figure.render() | |
else: | |
F = "2015-07-01" | |
T = "2019-11-30" | |
print("Date TO is Missing") | |
else: | |
F = "2015-07-01" | |
T = "2019-11-30" | |
print("Date From is Missing") | |
else: | |
pass | |
#--------------------------------------------------------------------------------------------------------------------------------# | |
elif selected_dataset == "dataset_nighttime": | |
if selected_shapefile != None: | |
shapefile_path = ('C:\\Users\\piv\\Desktop\\y\\media\\shp') | |
# D:\Desktop\final_working1-New-2023\final\media | |
roi_gdf = gpd.read_file(shapefile_path) | |
roi_geojson = roi_gdf.to_crs("EPSG:4326").to_json() | |
# Create a folium GeoJson layer for visualization | |
roi_geojson_layer = folium.GeoJson(roi_geojson, name='ROI GeoJSON') | |
roi_geojson_layer.add_to(m) | |
# Convert the GeoJSON content to Earth Engine object | |
ee_object = geemap.geojson_to_ee(json.loads(roi_geojson)) | |
if selected_date_range_From != None: | |
if selected_date_range_To != None: | |
print("I am here") | |
F = selected_date_range_From | |
T = selected_date_range_To | |
print(F,"==>",T) | |
dataset_nighttime = ee.ImageCollection('NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG').filter(ee.Filter.date(F, T)) | |
# Mosaic the image collection to a single image | |
nighttime = dataset_nighttime.select('avg_rad').mosaic() | |
# Clip the nighttime lights image to the defined region | |
nighttime_clipped = nighttime.clip(ee_object) | |
nighttimeVis = {'min': 0.0, 'max': 60.0,'palette': ['1a3678', '2955bc', '5699ff', '8dbae9', 'acd1ff', 'caebff', 'e5f9ff', | |
'fdffb4', 'ffe6a2', 'ffc969', 'ffa12d', 'ff7c1f', 'ca531a', 'ff0000', | |
'ab0000']} | |
nighttime_layer = folium.TileLayer( | |
tiles=nighttime_clipped.getMapId(nighttimeVis)['tile_fetcher'].url_format, | |
attr='Google Earth Engine', | |
name='Nighttime Lights', | |
overlay=True, | |
control=True | |
).add_to(m) | |
m.add_child(folium.LayerControl()) | |
figure.render() | |
else: | |
F = "2015-07-01" | |
T = "2023-09-30" | |
print("Date TO is Missing") | |
else: | |
F = "2015-07-01" | |
T = "2023-09-30" | |
print("Date From is Missing") | |
else: | |
pass | |
#------------------------------------------------------------------------------------------------------------------------------------# | |
#------------------------------------------------------------------------------------------------------------------------------------# | |
elif selected_dataset == "precipitation": | |
if selected_shapefile != None: | |
shapefile_path = ('C:\\Users\\piv\\Desktop\\y\\media\\shp') | |
roi_gdf = gpd.read_file(shapefile_path) | |
roi_geojson = roi_gdf.to_crs("EPSG:4326").to_json() | |
# Create a folium GeoJson layer for visualization | |
roi_geojson_layer = folium.GeoJson(roi_geojson, name='ROI GeoJSON') | |
roi_geojson_layer.add_to(m) | |
# Convert the GeoJSON content to Earth Engine object | |
ee_object = geemap.geojson_to_ee(json.loads(roi_geojson)) | |
if selected_date_range_From != None: | |
if selected_date_range_To != None: | |
print("I am here") | |
F = selected_date_range_From | |
T = selected_date_range_To | |
print(F,"==>",T) | |
# Load the dataset | |
dataset = (ee.ImageCollection('UCSB-CHG/CHIRPS/DAILY').filterBounds(ee_object).filter(ee.Filter.date(F, T))) | |
# Calculate the sum of the dataset | |
dataset1 = dataset.sum() | |
# Clip the summed dataset to the defined region | |
dataset2 = dataset1.clip(ee_object) | |
# Select the 'precipitation' band | |
precipitation = dataset2.select('precipitation') | |
# Define visualization parameters | |
imageVisParam = { | |
'min': 80, | |
'max': 460, | |
'palette': ["001137","0aab1e","e7eb05","ff4a2d","e90000"] | |
} | |
# Clip the precipitation data to the region | |
precipitation_clipped = precipitation.clip(ee_object) | |
# Add precipitation layer to the map | |
folium.TileLayer( | |
tiles=precipitation_clipped.getMapId(imageVisParam)['tile_fetcher'].url_format, | |
attr='Google Earth Engine', | |
name='Precipitation', | |
overlay=True, | |
control=True | |
).add_to(m) | |
m.add_child(folium.LayerControl()) | |
figure.render() | |
else: | |
F = "2015-07-01" | |
T = "2023-09-30" | |
print("Date TO is Missing") | |
else: | |
F = "2015-07-01" | |
T = "2023-09-30" | |
print("Date From is Missing") | |
else: | |
pass | |
#------------------------------------------------------------------------------------------------------------------------------------# | |
#------------------------------------------------------------------------------------------------------------------------------------# | |
#to be rendered | |
dataset_options = ['Modis', | |
'dataset_nighttime', | |
'precipitation', | |
'GlobalSurfaceWater', | |
'WorldPop', | |
'COPERNICUS'] | |
shapes_options = ['District_Boundary', | |
'hydro_basins', | |
'karachi', | |
'National_Constituency_with_Projected_2010_Population', | |
'Provincial_Boundary', | |
'Provincial_Constituency', | |
'Tehsil_Boundary', | |
'Union_Council'] | |
# print(figure) | |
# map_html = m._repr_html_() | |
m.save('ndvi_map.html') | |
context = {"map": figure,"dataset_options":dataset_options,"shapes_options": shapes_options} | |
return render(request, template_name , context) | |
def generate_ndvi_map(request): | |
# Create a response object for the HTML file | |
response = HttpResponse(content_type='text/html') | |
# Open and read the HTML file | |
with open('ndvi_map.html', 'rb') as html_file: | |
response.write(html_file.read()) | |
# Set the Content-Disposition header to suggest a filename for download | |
response['Content-Disposition'] = 'attachment; filename="ndvi_map.html"' | |
return response | |
def generate_chart(request): | |
template_name = 'results.html' | |
water_threshold=0.2 | |
if request.method == 'GET': | |
selected_dataset = request.GET.get('dataset') | |
selected_shapefile = request.GET.get('shapefile') | |
selected_date_range_From = request.GET.get('dateRangeFrom') | |
selected_date_range_To = request.GET.get('dateRangeTo') | |
print(f'Selected Dataset: {selected_dataset}') | |
print(f'Selected Dataset: {selected_shapefile}') | |
figure = folium.Figure() | |
m = folium.Map( | |
location=[25.5973518, 65.54495724], | |
zoom_start=7, | |
) | |
m.add_to(figure) | |
#----------------------------------------------------------------------------------------------------------------------# | |
if selected_dataset == "Modis": | |
if selected_shapefile != None: | |
shapefile_path = ('C:\\Users\\piv\\Desktop\\y\\media\\shp') | |
roi_gdf = gpd.read_file(shapefile_path) | |
roi_geojson = roi_gdf.to_crs("EPSG:4326").to_json() | |
# Create a folium GeoJson layer for visualization | |
roi_geojson_layer = folium.GeoJson(roi_geojson, name='ROI GeoJSON') | |
roi_geojson_layer.add_to(m) | |
# Convert the GeoJSON content to Earth Engine object | |
ee_object = geemap.geojson_to_ee(json.loads(roi_geojson)) | |
if selected_date_range_From != None: | |
if selected_date_range_To != None: | |
print("I am here") | |
F = selected_date_range_From | |
T = selected_date_range_To | |
print(F,"==>",T) | |
dataset = ee.ImageCollection('MODIS/006/MOD13Q1').filter(ee.Filter.date(F, T)).filterBounds(ee_object).first() | |
modisndvi = dataset.select('NDVI') | |
def water_function(image): | |
ndwi = image.normalizedDifference(['B3', 'B5']).rename('NDWI') | |
ndwi1 = ndwi.select('NDWI') | |
water01 = ndwi1.gt(water_threshold) | |
image = image.updateMask(water01).addBands(ndwi1) | |
area = ee.Image.pixelArea() | |
water_area = water01.multiply(area).rename('waterArea') | |
image = image.addBands(water_area) | |
stats = water_area.reduceRegion({ | |
'reducer': ee.Reducer.sum(), | |
'geometry': shapefile_path, | |
'scale': 30, | |
}) | |
return image.set(stats) | |
modisndvi = modisndvi.clip(ee_object) | |
vis_paramsNDVI = { | |
'min': 0, | |
'max': 9000, | |
'palette': ['FE8374', 'C0E5DE', '3A837C', '034B48']} | |
map_id_dict = ee.Image(modisndvi).getMapId(vis_paramsNDVI) | |
folium.raster_layers.TileLayer( | |
tiles=map_id_dict['tile_fetcher'].url_format, | |
attr='Google Earth Engine', | |
name='NDVI', | |
overlay=True, | |
control=True | |
).add_to(m) | |
m.add_child(folium.LayerControl()) | |
figure.render() | |
else: | |
F = "2015-07-01" | |
T = "2019-11-30" | |
print("Date TO is Missing") | |
else: | |
F = "2015-07-01" | |
T = "2019-11-30" | |
print("Date From is Missing") | |
else: | |
pass | |
#--------------------------------------------------------------------------------------------------------------------------------# | |
elif selected_dataset == "dataset_nighttime": | |
if selected_shapefile != None: | |
shapefile_path =('C:\\Users\\piv\\Desktop\\y\\media\\shp') | |
# D:\Desktop\final_working1-New-2023\final\media | |
roi_gdf = gpd.read_file(shapefile_path) | |
roi_geojson = roi_gdf.to_crs("EPSG:4326").to_json() | |
# Create a folium GeoJson layer for visualization | |
roi_geojson_layer = folium.GeoJson(roi_geojson, name='ROI GeoJSON') | |
roi_geojson_layer.add_to(m) | |
# Convert the GeoJSON content to Earth Engine object | |
ee_object = geemap.geojson_to_ee(json.loads(roi_geojson)) | |
if selected_date_range_From != None: | |
if selected_date_range_To != None: | |
print("I am here") | |
F = selected_date_range_From | |
T = selected_date_range_To | |
print(F,"==>",T) | |
dataset_nighttime = ee.ImageCollection('NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG').filter(ee.Filter.date(F, T)) | |
# Mosaic the image collection to a single image | |
nighttime = dataset_nighttime.select('avg_rad').mosaic() | |
# Clip the nighttime lights image to the defined region | |
nighttime_clipped = nighttime.clip(ee_object) | |
nighttimeVis = {'min': 0.0, 'max': 60.0,'palette': ['1a3678', '2955bc', '5699ff', '8dbae9', 'acd1ff', 'caebff', 'e5f9ff', | |
'fdffb4', 'ffe6a2', 'ffc969', 'ffa12d', 'ff7c1f', 'ca531a', 'ff0000', | |
'ab0000']} | |
nighttime_layer = folium.TileLayer( | |
tiles=nighttime_clipped.getMapId(nighttimeVis)['tile_fetcher'].url_format, | |
attr='Google Earth Engine', | |
name='Nighttime Lights', | |
overlay=True, | |
control=True | |
).add_to(m) | |
m.add_child(folium.LayerControl()) | |
figure.render() | |
else: | |
F = "2015-07-01" | |
T = "2023-09-30" | |
print("Date TO is Missing") | |
else: | |
F = "2015-07-01" | |
T = "2023-09-30" | |
print("Date From is Missing") | |
else: | |
pass | |
elif selected_dataset == "precipitation": | |
if selected_shapefile != None: | |
shapefile_path = ('C:\\Users\\piv\\Desktop\\y\\media\\shp') | |
roi_gdf = gpd.read_file(shapefile_path) | |
roi_geojson = roi_gdf.to_crs("EPSG:4326").to_json() | |
# Create a folium GeoJson layer for visualization | |
roi_geojson_layer = folium.GeoJson(roi_geojson, name='ROI GeoJSON') | |
roi_geojson_layer.add_to(m) | |
# Convert the GeoJSON content to Earth Engine object | |
ee_object = geemap.geojson_to_ee(json.loads(roi_geojson)) | |
if selected_date_range_From != None: | |
if selected_date_range_To != None: | |
print("I am here") | |
F = selected_date_range_From | |
T = selected_date_range_To | |
print(F, "=>", T) | |
# Load the dataset | |
dataset = (ee.ImageCollection('UCSB-CHG/CHIRPS/DAILY').filterBounds(ee_object).filter(ee.Filter.date(F, T))) | |
# Calculate the sum of the dataset | |
dataset1 = dataset.sum() | |
# Clip the summed dataset to the defined region | |
dataset2 = dataset1.clip(ee_object) | |
# Select the 'precipitation' band | |
precipitation = dataset2.select('precipitation') | |
# Define visualization parameters | |
imageVisParam = { | |
'min': 80, | |
'max': 460, | |
'palette': ["001137", "0aab1e", "e7eb05", "ff4a2d", "e90000"] | |
} | |
# Clip the precipitation data to the region | |
precipitation_clipped = precipitation.clip(ee_object) | |
# Add precipitation layer to the map | |
folium.TileLayer( | |
tiles=precipitation_clipped.getMapId(imageVisParam)['tile_fetcher'].url_format, | |
attr='Google Earth Engine', | |
name='Precipitation', | |
overlay=True, | |
control=True | |
).add_to(m) | |
m.add_child(folium.LayerControl()) | |
figure.render() | |
else: | |
F = "2015-07-01" | |
T = "2023-09-30" | |
print("Date TO is Missing") | |
else: | |
F = "2015-07-01" | |
T = "2023-09-30" | |
print("Date From is Missing") | |
elif selected_dataset == "WorldPop": | |
shapefile_path = ('C:\\Users\\piv\\Desktop\\y\\media\\shp') | |
roi_gdf = gpd.read_file(shapefile_path) | |
roi_geojson = roi_gdf.to_crs("EPSG:4326").to_json() | |
# Create a folium GeoJson layer for visualization | |
m = folium.Map(location=[25.5, 61], zoom_start=6) | |
roi_geojson_layer = folium.GeoJson(roi_geojson, name='ROI GeoJSON') | |
roi_geojson_layer.add_to(m) | |
# Convert the GeoJSON content to Earth Engine object | |
ee_object = geemap.geojson_to_ee(json.loads(roi_geojson)) | |
if selected_date_range_From and selected_date_range_To: | |
F = selected_date_range_From | |
T = selected_date_range_To | |
# Load the image collection | |
collection = (ee.ImageCollection("WorldPop/GP/100m/pop") | |
.filterBounds(ee_object) | |
.filter(ee.Filter.date(F, T))) | |
# Calculate the sum of population for the specified region and time range | |
s2median = collection.sum() | |
# Clip the result to the ROI | |
roi = s2median.clip(ee_object) | |
# Create an image time series chart | |
chart = (ee.Image.cat(collection) | |
.reduceRegion(ee.Reducer.sum(), roi, 200) | |
.getInfo()) | |
# Return the chart as JSON and map HTML as a response | |
clipped_image_url = roi.getThumbUrl({ | |
'min': 0, | |
'max': 2000, | |
'dimensions': 512, | |
'palette': ['000000', 'ffffff'] | |
}) | |
# Add the clipped population image as a layer to the map | |
folium.TileLayer( | |
tiles=clipped_image_url, | |
attr="Population year17", | |
overlay=True, | |
control=True, | |
).add_to(m) | |
# Return the folium map as HTML in the JSON response | |
map_html = m.get_root().render() | |
response_data = {'chart': chart, 'map_html': map_html} | |
return JsonResponse(response_data) | |
#to be rendered | |
dataset_options = ['Modis', | |
'dataset_nighttime', | |
'precipitation', | |
'GlobalSurfaceWater', | |
'WorldPop', | |
'COPERNICUS'] | |
shapes_options = ['District_Boundary', | |
'hydro_basins', | |
'karachi', | |
'National_Constituency_with_Projected_2010_Population', | |
'Provincial_Boundary', | |
'Provincial_Constituency', | |
'Tehsil_Boundary', | |
'Union_Council'] | |
# print(figure) | |
# map_html = m._repr_html_() | |
m.save('ndvi_map.html') | |
context = {"map": figure,"dataset_options":dataset_options,"shapes_options": shapes_options} | |
return render(request, template_name , context) | |
# You can continue with the existing code or add more logic as needed | |
def map (request): | |
template_name='map.html' | |
return render(request,template_name) | |
def GEE(request): | |
if request.method == 'POST': | |
formulario = dataset_geemap(data=request.POST) | |
if formulario.is_valid(): | |
option = formulario.cleaned_data['option'] | |
# Apply custom styles to the form fields or widgets | |
formulario.fields['option'].widget.attrs['class'] = 'custom-select' | |
figure = folium.Figure() | |
Map = geemap.Map( | |
plugin_Draw = True, | |
Draw_export = False, | |
plugin_LayerControl = False, | |
location = [25, 67], | |
zoom_start = 10, | |
plugin_LatLngPopup = False) | |
Map.add_basemap('HYBRID') | |
type_map(Map, option) | |
file, url_d = data_gee() | |
Map.add_layer_control() | |
url = url_d[url_d['id'] == option].reset_index() | |
url = url['asset_url'].iloc[0] | |
form = dataset_geemap(data=request.POST) | |
else: | |
form = dataset_geemap() | |
figure = folium.Figure() | |
Map = geemap.Map( | |
plugin_Draw = True, | |
Draw_export = False, | |
plugin_LayerControl = False, | |
location = [25, 67], | |
zoom_start = 10, | |
plugin_LatLngPopup = False) | |
Map.add_basemap('HYBRID') | |
dataset = ee.ImageCollection('BIOPAMA/GlobalOilPalm/v1') | |
opClass = dataset.select('classification') | |
mosaic = opClass.mosaic() | |
classificationVis = { | |
'min': 1, | |
'max': 3, | |
'palette': ['ff0000','ef00ff', '696969'] | |
} | |
mask = mosaic.neq(3) | |
mask = mask.where(mask.eq(0), 0.6) | |
Map.addLayer(mosaic.updateMask(mask), | |
classificationVis, 'Oil palm plantation type', True) | |
Map.setCenter(25,67,8) | |
url = 'https://developers.google.com/earth-engine/datasets/catalog/BIOPAMA_GlobalOilPalm_v1#terms-of-use' | |
Map.add_to(figure) | |
figure = figure._repr_html_() #updated | |
return render(request, 'gee.html', {'form':form, 'map':figure, 'url':url}) | |
# Define your ee_array_to_df, t_modis_to_celsius, and fit_func functions here | |
def result_options(request): | |
return render (request, "result_options.html" ) | |
def temp_result(request): | |
if request.method == 'GET': | |
selected_shapefile = request.GET.get('shapefile') | |
selected_date_range_From = request.GET.get('dateRangeFrom') | |
selected_date_range_To = request.GET.get('dateRangeTo') | |
print(selected_shapefile) | |
print(selected_date_range_From) | |
print(selected_date_range_To) | |
if selected_date_range_From == None or selected_date_range_To == None: | |
i_date ='2022-06-24' | |
f_date ='2023-09-19' | |
else: | |
i_date = selected_date_range_From | |
f_date = selected_date_range_To | |
# Import the MODIS land surface temperature collection. | |
lst = ee.ImageCollection('MODIS/006/MOD11A1') | |
# Selection of appropriate bands and dates for LST. | |
lst = lst.select('LST_Day_1km', 'QC_Day').filterDate(i_date, f_date) | |
if selected_shapefile == None: | |
u_lon = 4.8148 | |
u_lat = 45.7758 | |
u_poi = ee.Geometry.Point(u_lon, u_lat) | |
else: | |
shapefile_path = ('C:\\Users\\piv\\Desktop\\y\\media\\shp') | |
roi_gdf = gpd.read_file(shapefile_path) | |
roi_geojson = roi_gdf.to_crs("EPSG:4326").to_json() | |
# Create a folium GeoJson layer for visualization | |
ee_object = geemap.geojson_to_ee(json.loads(roi_geojson)) | |
u_poi = ee_object | |
# Get the data for the pixel intersecting the point in the urban area. | |
scale = 1000 # scale in meters | |
lst_u_poi = lst.getRegion(u_poi, scale).getInfo() | |
# Convert the Earth Engine data to a DataFrame using the provided function. | |
lst_df_urban = ee_array_to_df(lst_u_poi, ['LST_Day_1km']) | |
# Apply the function to convert temperature units to Celsius. | |
lst_df_urban['LST_Day_1km'] = lst_df_urban['LST_Day_1km'].apply(t_modis_to_celsius) | |
# Fitting curves. | |
## First, extract x values (times) from the df. | |
x_data_u = np.asanyarray(lst_df_urban['time'].apply(float)) | |
## Then, extract y values (LST) from the df. | |
y_data_u = np.asanyarray(lst_df_urban['LST_Day_1km'].apply(float)) | |
## Define the fitting function with parameters. | |
def fit_func(t, lst0, delta_lst, tau, phi): | |
return lst0 + (delta_lst/2)*np.sin(2*np.pi*t/tau + phi) | |
## Optimize the parameters using a good start p0. | |
lst0 = 20 | |
delta_lst = 40 | |
tau = 365*24*3600*1000 # milliseconds in a year | |
phi = 2*np.pi*4*30.5*3600*1000/tau # offset regarding when we expect LST(t)=LST0 | |
params_u, params_covariance_u = optimize.curve_fit( | |
fit_func, x_data_u, y_data_u, p0=[lst0, delta_lst, tau, phi]) | |
x_data_u_formatted = [datetime.utcfromtimestamp(ts / 1000).strftime('%d %m %Y') for ts in x_data_u] | |
# x_data_r_formatted = [datetime.utcfromtimestamp(ts / 1000).strftime('%d %m %Y') for ts in x_data_r] | |
# return render(request, 'chart.html', {'chart_data': chart_data}) | |
urban_trace = go.Scatter( | |
x=x_data_u_formatted, # Use the formatted dates | |
y=fit_func(x_data_u, *params_u), # Use your fit_func to generate y values | |
mode='lines', | |
name='Urban Area' | |
) | |
# Create a Plotly figure for the rural data | |
data = [urban_trace] | |
layout = go.Layout( | |
title='Land Surface Temperature over Time', | |
xaxis=dict(title='Time'), | |
yaxis=dict(title='LST (°C)'), | |
showlegend=True | |
) | |
fig = go.Figure(data=data, layout=layout) | |
# Convert the Plotly figure to HTML | |
plot_div = fig.to_html(full_html=False, default_height=500, default_width=700) | |
shapes_options = ['District_Boundary', | |
'hydro_basins', | |
'karachi', | |
'National_Constituency_with_Projected_2010_Population', | |
'Provincial_Boundary', | |
'Provincial_Constituency', | |
'Tehsil_Boundary', | |
'Union_Council'] | |
context={ | |
"shapes_options":shapes_options, | |
"plot_div":plot_div | |
} | |
return render(request, "temp_result.html",context ) | |
else: | |
shapes_options = ['District_Boundary', | |
'hydro_basins', | |
'karachi', | |
'National_Constituency_with_Projected_2010_Population', | |
'Provincial_Boundary', | |
'Provincial_Constituency', | |
'Tehsil_Boundary', | |
'Union_Council'] | |
context={ | |
"shapes_options":shapes_options | |
} | |
return render(request, "temp_result.html",context ) | |
def chart(request): | |
# Define the date range of interest. | |
#replaceble with dates | |
i_date = '2017-01-01' | |
f_date = '2020-01-01' | |
# Import the MODIS land surface temperature collection. | |
lst = ee.ImageCollection('MODIS/006/MOD11A1') | |
# Selection of appropriate bands and dates for LST. | |
lst = lst.select('LST_Day_1km', 'QC_Day').filterDate(i_date, f_date) | |
# Define the urban location of interest as a point near Lyon, France. | |
#replaceble with shapefile | |
u_lon = 4.8148 | |
u_lat = 45.7758 | |
u_poi = ee.Geometry.Point(u_lon, u_lat) | |
# Get the data for the pixel intersecting the point in the urban area. | |
scale = 1000 # scale in meters | |
lst_u_poi = lst.getRegion(u_poi, scale).getInfo() | |
# Convert the Earth Engine data to a DataFrame using the provided function. | |
lst_df_urban = ee_array_to_df(lst_u_poi, ['LST_Day_1km']) | |
# Apply the function to convert temperature units to Celsius. | |
lst_df_urban['LST_Day_1km'] = lst_df_urban['LST_Day_1km'].apply(t_modis_to_celsius) | |
# Fitting curves. | |
## First, extract x values (times) from the df. | |
x_data_u = np.asanyarray(lst_df_urban['time'].apply(float)) | |
## Then, extract y values (LST) from the df. | |
y_data_u = np.asanyarray(lst_df_urban['LST_Day_1km'].apply(float)) | |
## Define the fitting function with parameters. | |
def fit_func(t, lst0, delta_lst, tau, phi): | |
return lst0 + (delta_lst/2)*np.sin(2*np.pi*t/tau + phi) | |
## Optimize the parameters using a good start p0. | |
lst0 = 20 | |
delta_lst = 40 | |
tau = 365*24*3600*1000 # milliseconds in a year | |
phi = 2*np.pi*4*30.5*3600*1000/tau # offset regarding when we expect LST(t)=LST0 | |
params_u, params_covariance_u = optimize.curve_fit( | |
fit_func, x_data_u, y_data_u, p0=[lst0, delta_lst, tau, phi]) | |
x_data_u_formatted = [datetime.utcfromtimestamp(ts / 1000).strftime('%d %m %Y') for ts in x_data_u] | |
# x_data_r_formatted = [datetime.utcfromtimestamp(ts / 1000).strftime('%d %m %Y') for ts in x_data_r] | |
# return render(request, 'chart.html', {'chart_data': chart_data}) | |
urban_trace = go.Scatter( | |
x=x_data_u_formatted, # Use the formatted dates | |
y=fit_func(x_data_u, *params_u), # Use your fit_func to generate y values | |
mode='lines', | |
name='Urban Area' | |
) | |
# Create a Plotly figure for the rural data | |
data = [urban_trace] | |
layout = go.Layout( | |
title='Land Surface Temperature over Time', | |
xaxis=dict(title='Time'), | |
yaxis=dict(title='LST (°C)'), | |
showlegend=True | |
) | |
fig = go.Figure(data=data, layout=layout) | |
# Convert the Plotly figure to HTML | |
plot_div = fig.to_html(full_html=False, default_height=500, default_width=700) | |
return render(request, 'chart.html', {'plot_div': plot_div}) | |
#Auth | |
def signup (request): | |
form = SignUpForm() | |
if request.method == "POST": | |
form = SignUpForm(request.POST) | |
if form.is_valid(): | |
user = form.save() | |
auth_login(request,user) | |
return redirect('index') | |
return render(request, 'signup.html', {'form':form}) | |
class UserUpdateView(UpdateView): | |
model=User | |
fields =('first_name','last_name', 'email',) | |
template_name = 'my_account.html' | |
success_url = reverse_lazy('my_account') | |
def get_object(self): | |
return self.request.user | |
def ee_array_to_df(arr, list_of_bands): | |
"""Transforms client-side ee.Image.getRegion array to pandas.DataFrame.""" | |
df = pd.DataFrame(arr) | |
# Rearrange the header. | |
headers = df.iloc[0] | |
df = pd.DataFrame(df.values[1:], columns=headers) | |
# Remove rows without data inside. | |
df = df[['longitude', 'latitude', 'time', *list_of_bands]].dropna() | |
# Convert the data to numeric values. | |
for band in list_of_bands: | |
df[band] = pd.to_numeric(df[band], errors='coerce') | |
# Convert the time field into a datetime. | |
df['datetime'] = pd.to_datetime(df['time'], unit='ms') | |
# Keep the columns of interest. | |
df = df[['time', 'datetime', *list_of_bands]] | |
print(df) | |
return df | |
def t_modis_to_celsius(t_modis): | |
"""Converts MODIS LST units to degrees Celsius.""" | |
t_celsius = 0.02 * t_modis - 273.15 | |
return t_celsius | |
def fit_func(t, lst0, delta_lst, tau, phi): | |
"""Fitting function for the curve.""" | |
return lst0 + (delta_lst / 2) * np.sin(2 * np.pi * t / tau + phi) |