Spaces:
Sleeping
Sleeping
File size: 8,901 Bytes
9058afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import streamlit as st
import folium
import geopandas as gpd
import json
import geemap.foliumap as geemap
import ee
import pandas as pd
import os
from google.auth.transport.requests import Request
import google.auth.exceptions
from streamlit.components.v1 import html
# Path to your shapefiles and service account key
SHAPEFILE_DIR = 'C:/Users/piv/Desktop/y/media/shp'
def initialize_gee():
service = os.getenv('SA')
file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'gee', 'ee-muzzamil1-37ebc3dece52.json')
credentials = ee.ServiceAccountCredentials(service, file)
try:
ee.Initialize(credentials)
st.success("Google Earth Engine initialized successfully.")
except google.auth.exceptions.RefreshError:
try:
request = Request()
credentials.refresh(request)
ee.Initialize(credentials)
st.success("Google Earth Engine token refreshed and initialized successfully.")
except Exception as e:
st.error(f"Error refreshing Google Earth Engine token: {e}")
except Exception as e:
st.error(f"Error initializing Google Earth Engine: {e}")
def create_folium_map(selected_dataset, ee_object, start_date_str, end_date_str):
folium_map = folium.Map(location=[25.5973518, 65.54495724], zoom_start=7)
try:
if selected_dataset == "Modis":
dataset = ee.ImageCollection('MODIS/006/MOD13Q1') \
.filter(ee.Filter.date(start_date_str, end_date_str)) \
.filterBounds(ee_object)
def clip_image(img):
return img.clip(ee_object).select('NDVI')
clipped_collection = dataset.map(clip_image)
modis_ndvi = clipped_collection.mean()
vis_params_ndvi = {
'min': 0,
'max': 9000,
'palette': ['FE8374', 'C0E5DE', '3A837C', '034B48']
}
modis_ndvi_map_id = modis_ndvi.getMapId(vis_params_ndvi)
folium.TileLayer(
tiles=modis_ndvi_map_id['tile_fetcher'].url_format,
attr='Google Earth Engine',
name='NDVI',
overlay=True,
control=True
).add_to(folium_map)
elif selected_dataset == "dataset_nighttime":
dataset_nighttime = ee.ImageCollection('NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG') \
.filter(ee.Filter.date(start_date_str, end_date_str))
nighttime = dataset_nighttime.select('avg_rad').mosaic()
nighttime_clipped = nighttime.clip(ee_object)
nighttime_vis = {
'min': 0.0,
'max': 60.0,
'palette': ['1a3678', '2955bc', '5699ff', '8dbae9', 'acd1ff', 'caebff', 'e5f9ff', 'fdffb4', 'ffe6a2', 'ffc969', 'ffa12d', 'ff7c1f', 'ca531a', 'ff0000', 'ab0000']
}
nighttime_map_id = nighttime_clipped.getMapId(nighttime_vis)
folium.TileLayer(
tiles=nighttime_map_id['tile_fetcher'].url_format,
attr='Google Earth Engine',
name='Nighttime Lights',
overlay=True,
control=True
).add_to(folium_map)
elif selected_dataset == "precipitation":
dataset_precipitation = ee.ImageCollection('UCSB-CHG/CHIRPS/DAILY') \
.filter(ee.Filter.date(start_date_str, end_date_str))
precipitation = dataset_precipitation.mosaic().clip(ee_object)
precip_vis = {
'min': 0,
'max': 300,
'palette': ['blue', 'cyan', 'lime', 'yellow', 'red']
}
precip_map_id = precipitation.getMapId(precip_vis)
folium.TileLayer(
tiles=precip_map_id['tile_fetcher'].url_format,
attr='Google Earth Engine',
name='Precipitation',
overlay=True,
control=True
).add_to(folium_map)
elif selected_dataset == "GlobalSurfaceWater":
st.warning("GlobalSurfaceWater dataset is not configured.")
elif selected_dataset == "WorldPop":
dataset = ee.ImageCollection('WorldPop/GP/100m/pop') \
.filterBounds(ee_object) \
.filter(ee.Filter.date(start_date_str, end_date_str))
population = dataset.mean().clip(ee_object)
pop_vis = {
'min': 0,
'max': 1000,
'palette': ['blue', 'green', 'yellow', 'red']
}
pop_map_id = population.getMapId(pop_vis)
folium.TileLayer(
tiles=pop_map_id['tile_fetcher'].url_format,
attr='Google Earth Engine',
name='World Population',
overlay=True,
control=True
).add_to(folium_map)
elif selected_dataset == "COPERNICUS":
dataset = ee.ImageCollection('COPERNICUS/S2') \
.filterBounds(ee_object) \
.filter(ee.Filter.date(start_date_str, end_date_str))
sentinel = dataset.median().clip(ee_object)
vis_params = {
'bands': ['B4', 'B3', 'B2'],
'min': 0,
'max': 3000,
'gamma': 1.4
}
copernicus_map_id = sentinel.getMapId(vis_params)
folium.TileLayer(
tiles=copernicus_map_id['tile_fetcher'].url_format,
attr='Google Earth Engine',
name='Copernicus Sentinel-2',
overlay=True,
control=True
).add_to(folium_map)
folium_map.add_child(folium.LayerControl())
except Exception as e:
st.error(f"Error processing dataset: {e}")
folium_map_html = folium_map._repr_html_()
return folium_map_html
def handle_submit(selected_dataset, selected_date_range_From, selected_date_range_To, selected_shape):
shapefile_name = f'{selected_shape}.shp'
shapefile_path = os.path.join(SHAPEFILE_DIR, shapefile_name)
if os.path.exists(shapefile_path):
try:
roi_gdf = gpd.read_file(shapefile_path)
roi_geojson = roi_gdf.to_crs("EPSG:4326").to_json()
except Exception as e:
st.error(f"Error reading shapefile: {e}")
return
try:
ee_object = geemap.geojson_to_ee(json.loads(roi_geojson))
except Exception as e:
st.error(f"Error converting GeoJSON to Earth Engine object: {e}")
return
st.markdown("### Satellite Data Map")
folium_map_html = create_folium_map(
selected_dataset,
ee_object,
selected_date_range_From.strftime('%Y-%m-%d'),
selected_date_range_To.strftime('%Y-%m-%d')
)
html(folium_map_html, height=600)
else:
st.error("Selected shapefile does not exist.")
def submit_control():
selected_dataset = st.sidebar.selectbox(
"Select Dataset",
["Modis", "dataset_nighttime", 'precipitation', 'GlobalSurfaceWater', 'WorldPop', 'COPERNICUS']
)
selected_date_range_From = st.sidebar.date_input("From", value=pd.to_datetime("2015-07-01"))
selected_date_range_To = st.sidebar.date_input("To", value=pd.to_datetime("2023-09-30"))
shape_options = [
'District_Boundary', 'hydro_basins', 'karachi',
'National_Constituency_with_Projected_2010_Population',
'Provincial_Boundary', 'Provincial_Constituency',
'Tehsil_Boundary', 'Union_Council'
]
selected_shape = st.sidebar.selectbox("Select Shape", shape_options)
if st.sidebar.button("Submit"):
st.session_state.selected_dataset = selected_dataset
st.session_state.selected_date_range_From = selected_date_range_From
st.session_state.selected_date_range_To = selected_date_range_To
st.session_state.selected_shape = selected_shape
st.session_state.submitted = True
else:
st.session_state.submitted = False
if 'submitted' in st.session_state and st.session_state.submitted:
handle_submit(
st.session_state.selected_dataset,
st.session_state.selected_date_range_From,
st.session_state.selected_date_range_To,
st.session_state.selected_shape
)
def main():
st.set_page_config(layout="wide")
st.title("Satellite Data Visualization, Interactive Map")
initialize_gee()
submit_control()
if __name__ == "__main__":
main()
|