Spaces:
Runtime error
Runtime error
File size: 2,064 Bytes
d1fced8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import torch
from transformers import pipeline, BitsAndBytesConfig
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import requests
from PIL import Image
from io import BytesIO
# Set up device (CPU or GPU)
device = "cuda" if torch.cuda.is_available() else "cpu"
# Configure quantization if using GPU
if device == "cuda":
print("GPU found. Using 4-bit quantization.")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
else:
print("GPU not found. Using CPU with default settings.")
quantization_config = None
# Load model pipeline
model_id = "bczhou/tiny-llava-v1-hf"
pipe = pipeline("image-to-text", model=model_id, device=device)
print(f"Using device: {device}")
# Initialize FastAPI application
app = FastAPI()
# Health check endpoint to ensure API is running
@app.get("/")
async def root():
return {"message": "API is running fine."}
# Define Pydantic model for request input
class ImagePromptInput(BaseModel):
image_url: str
prompt: str
# FastAPI route for generating text from an image
@app.post("/generate")
async def generate_text(input_data: ImagePromptInput):
try:
# Download and process the image
response = requests.get(input_data.image_url)
image = Image.open(BytesIO(response.content)).convert("RGB")
image = image.resize((750, 500)) # Resize image to fixed dimensions
# Create a full prompt to pass to the model
full_prompt = f"USER: <image>\n{input_data.prompt}\nASSISTANT: "
# Generate response using the model pipeline
outputs = pipe(image, prompt=full_prompt, generate_kwargs={"max_new_tokens": 200})
# Return generated text
generated_text = outputs[0]['generated_text'] #type: ignore
return {"response": generated_text}
except Exception as e:
# Return error if something goes wrong
raise HTTPException(status_code=500, detail=str(e))
|