File size: 22,859 Bytes
b04e932 37d5f61 d2c5913 94a1f00 369eb02 d2c5913 37d5f61 0202f73 5b7d0a1 6327e70 37d5f61 6327e70 b04e932 6327e70 37d5f61 6327e70 37d5f61 b04e932 37d5f61 d2c5913 6327e70 d2c5913 2a89186 8121e85 2a89186 8121e85 2a89186 6327e70 2a89186 d2c5913 2a89186 d2c5913 2a89186 6327e70 2a89186 d2c5913 a068a3a b04e932 8121e85 d2c5913 6327e70 d2c5913 37d5f61 d2c5913 a068a3a 5d7a66b a068a3a d2c5913 a068a3a d2c5913 6327e70 a068a3a 6327e70 d2c5913 6327e70 d2c5913 37d5f61 d2c5913 6327e70 d2c5913 b748cf7 6327e70 8121e85 d2c5913 37d5f61 d2c5913 6327e70 b748cf7 d2c5913 6327e70 d2c5913 6327e70 d2c5913 6327e70 2a89186 d2c5913 6327e70 a068a3a 6327e70 a068a3a 6327e70 a068a3a d2c5913 0a92769 6327e70 37d5f61 a068a3a 37d5f61 d2c5913 37d5f61 051e72d 1ee32d1 051e72d d2c5913 b04e932 369eb02 280e437 369eb02 1ee32d1 369eb02 c6f2d74 369eb02 c6f2d74 369eb02 280e437 369eb02 280e437 369eb02 b04e932 94a1f00 b04e932 94a1f00 b04e932 94a1f00 280e437 b04e932 94a1f00 b04e932 94a1f00 280e437 94a1f00 1ee32d1 94a1f00 280e437 94a1f00 b04e932 94a1f00 1ee32d1 edb74b9 1ee32d1 94a1f00 1ee32d1 94a1f00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
"""
Core module for data visualization components.
"""
import streamlit as st
import plotly.express as px
import pandas as pd
from typing import Optional, Dict, List, Set
from ..core.glicko2_ranking import analyze_glicko2_rankings
import plotly.graph_objects as go
import numpy as np
def clean_device_id(device_id: str) -> str:
"""Extract clean device name from normalized ID by removing platform prefix"""
if device_id.startswith("iOS/"):
return device_id[4:] # Remove "iOS/"
return device_id
def get_quant_name(factor: float) -> str:
"""Get human-readable name for quantization factor"""
if pd.isna(factor):
return "Unknown"
if factor >= 1.0:
return "No Quantization (F16/F32)"
quant_map = {
0.8: "[i]Q8_x",
0.6: "[i]Q6_x",
0.5: "[i]Q5_x",
0.4: "[i]Q4_x",
0.3: "[i]Q3_x",
0.2: "[i]Q2_x",
0.1: "[i]Q1_x",
}
return quant_map.get(factor, f"Q{int(factor*10)}_x")
def create_performance_plot(
df: pd.DataFrame, metric: str, title: str, hover_data: List[str] = None
):
"""Create a performance comparison plot"""
if df.empty:
return None
if hover_data is None:
hover_data = [
"CPU Cores",
"Peak Memory (GB)",
]
fig = px.bar(
df,
x="Device",
y=metric,
color="Platform",
title=title,
template="plotly_white",
barmode="group",
hover_data=hover_data,
)
fig.update_layout(
xaxis_title="Device",
yaxis_title="Token/sec" if "Token" in metric else metric,
legend_title="Platform",
plot_bgcolor="white",
height=400,
)
return fig
def filter_dataframe(df: pd.DataFrame, filters: Dict) -> pd.DataFrame:
"""Apply all filters to the dataframe"""
if df.empty:
return df
filtered_df = df.copy()
# Basic filters
if filters["model"] != "All":
filtered_df = filtered_df[filtered_df["Model ID"] == filters["model"]]
if filters["platform"] != "All":
filtered_df = filtered_df[filtered_df["Platform"] == filters["platform"]]
if filters["device"] != "All":
filtered_df = filtered_df[filtered_df["Device"] == filters["device"]]
# Flash Attention filter
if filters["flash_attn"] != "All":
filtered_df = filtered_df[filtered_df["flash_attn"] == filters["flash_attn"]]
# Cache Type filters
if filters["cache_type_k"] != "All":
filtered_df = filtered_df[
filtered_df["cache_type_k"] == filters["cache_type_k"]
]
if filters["cache_type_v"] != "All":
filtered_df = filtered_df[
filtered_df["cache_type_v"] == filters["cache_type_v"]
]
# Range filters
pp_min, pp_max = filters["pp_range"]
if pp_min is not None and pp_max is not None:
pp_values = filtered_df["PP Config"]
filtered_df = filtered_df[(pp_values >= pp_min) & (pp_values <= pp_max)]
tg_min, tg_max = filters["tg_range"]
if tg_min is not None and tg_max is not None:
tg_values = filtered_df["TG Config"]
filtered_df = filtered_df[(tg_values >= tg_min) & (tg_values <= tg_max)]
n_threads_min, n_threads_max = filters["n_threads"]
if n_threads_min is not None and n_threads_max is not None:
n_threads = filtered_df["n_threads"]
filtered_df = filtered_df[
(n_threads >= n_threads_min) & (n_threads <= n_threads_max)
]
n_gpu_layers_min, n_gpu_layers_max = filters["n_gpu_layers"]
if n_gpu_layers_min is not None and n_gpu_layers_max is not None:
n_gpu_layers = filtered_df["n_gpu_layers"]
filtered_df = filtered_df[
(n_gpu_layers >= n_gpu_layers_min) & (n_gpu_layers <= n_gpu_layers_max)
]
# Version filter
if filters.get("Version") != "All" and filters.get("Version"):
filtered_df = filtered_df[filtered_df["Version"] == filters["Version"]]
return filtered_df
def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
"""Render the leaderboard table with grouped and formatted data"""
if df.empty:
st.warning("No data available for the selected filters.")
return
# Apply filters
filtered_df = filter_dataframe(df, filters)
if filtered_df.empty:
st.warning("No data matches the selected filters.")
return
# Define the preferred column order (grouped logically)
column_order = [
# Device Info
"Device",
"Platform",
"CPU Cores",
"Total Memory (GB)",
"Peak Memory (GB)",
"Memory Usage (%)",
# Benchmark Results
"PP Config",
"PP Avg (t/s)",
"PP Std (t/s)",
"TG Config",
"TG Avg (t/s)",
"TG Std (t/s)",
# Model Config
"Model ID",
"Model Size",
"n_threads",
"flash_attn",
"cache_type_k",
"cache_type_v",
"n_context",
"n_batch",
"n_ubatch",
"Version",
]
# Group by selected columns
grouping_cols = filters["grouping"]
if not grouping_cols:
grouping_cols = ["Model ID", "Device", "Platform"] # Default grouping
# Create aggregations (excluding grouping columns)
agg_dict = {
col: agg
for col, agg in {
"Prompt Processing": ["mean", "std"],
"Token Generation": ["mean", "std"],
"Peak Memory (GB)": "mean",
"Total Memory (GB)": "first",
"CPU Cores": "first",
"Model Size": "first",
"Version": lambda x: ", ".join(sorted(set(x))),
"n_gpu_layers": lambda x: ", ".join(sorted(set(str(x)))),
}.items()
if col not in grouping_cols
}
# Group and aggregate
grouped_df = filtered_df.groupby(grouping_cols).agg(agg_dict).reset_index()
# Flatten column names
grouped_df.columns = [
col[0] if col[1] == "" else f"{col[0]} ({col[1]})" for col in grouped_df.columns
]
# Rename columns for display
column_mapping = {
"Prompt Processing (mean)": "PP Avg (t/s)",
"Prompt Processing (std)": "PP Std (t/s)",
"Token Generation (mean)": "TG Avg (t/s)",
"Token Generation (std)": "TG Std (t/s)",
"Memory Usage (%) (mean)": "Memory Usage (%)",
"Peak Memory (GB) (mean)": "Peak Memory (GB)",
"PP Config (first)": "PP Config",
"TG Config (first)": "TG Config",
"Model Size (first)": "Model Size",
"CPU Cores (first)": "CPU Cores",
"Total Memory (GB) (first)": "Total Memory (GB)",
"n_threads (first)": "n_threads",
"flash_attn (first)": "flash_attn",
"cache_type_k (first)": "cache_type_k",
"cache_type_v (first)": "cache_type_v",
"n_context (first)": "n_context",
"n_batch (first)": "n_batch",
"n_ubatch (first)": "n_ubatch",
"Version (<lambda>)": "Version",
}
grouped_df = grouped_df.rename(columns=column_mapping)
# Filter visible columns
visible_cols = filters["visible_columns"]
if visible_cols:
# Map the user-friendly names to actual column names
column_name_mapping = {
"Device": "Device",
"Platform": "Platform",
"CPU Cores": "CPU Cores",
"Total Memory (GB)": "Total Memory (GB)",
"Peak Memory (GB)": "Peak Memory (GB)",
"Memory Usage (%)": "Memory Usage (%)",
"PP Config": "PP Config",
"TG Config": "TG Config",
"Prompt Processing (mean)": "PP Avg (t/s)",
"Token Generation (mean)": "TG Avg (t/s)",
"Prompt Processing (std)": "PP Std (t/s)",
"Token Generation (std)": "TG Std (t/s)",
"Model": "Model ID",
"Model Size": "Model Size",
"Model ID": "Model ID",
"n_threads": "n_threads",
"flash_attn": "flash_attn",
"cache_type_k": "cache_type_k",
"cache_type_v": "cache_type_v",
"n_context": "n_context",
"n_batch": "n_batch",
"n_ubatch": "n_ubatch",
"Version": "Version",
}
# Convert visible columns and grouping columns to their mapped names
mapped_visible = {column_name_mapping.get(col, col) for col in visible_cols}
mapped_grouping = {
column_name_mapping.get(col, col) for col in filters["grouping"]
}
# Combine both sets to get unique columns
all_cols = mapped_visible | mapped_grouping
# Create final display columns list
display_cols = []
# Get all available columns we want to display
available_cols = set(all_cols)
# Add columns in the predefined order
for col in column_order:
if col in available_cols:
display_cols.append(col)
# Add any remaining columns that weren't in our predefined order
remaining_cols = sorted(list(available_cols - set(display_cols)))
display_cols.extend(remaining_cols)
else:
# Default columns if none selected
display_cols = column_order[:8]
# Display the filtered and grouped table
st.markdown("#### π Benchmark Results")
st.dataframe(
grouped_df[display_cols],
use_container_width=True,
height=min(
600, (len(grouped_df) + 1) * 35 + 40
), # Dynamic height based on content
hide_index=False,
column_config={
"Rank": st.column_config.NumberColumn(
"Rank",
help="Device ranking based on performance score",
),
"Device": st.column_config.TextColumn(
"Device",
help="Device brand and model",
),
"Best Score": st.column_config.NumberColumn(
"Score", help="Overall performance score (0-100)", format="%.2f"
),
"Best TG Speed": st.column_config.NumberColumn(
"Best TG Speed (t/s)",
help="Best token generation speed",
format="%.2f",
),
"Best PP Speed": st.column_config.NumberColumn(
"Best PP Speed (t/s)",
help="Best prompt processing speed",
format="%.2f",
),
},
)
def create_device_radar_chart(g2_confident_display: pd.DataFrame, top_n: int = 10):
"""Create a radar chart comparing the top N devices across different performance metrics."""
# Select top N devices
top_devices = g2_confident_display.nlargest(top_n, "Rating")
# Normalize metrics to 0-100 scale for better visualization
metrics = ["Rating", "Token Rating", "Prompt Rating"]
for metric in metrics:
min_val = top_devices[metric].min()
max_val = top_devices[metric].max()
top_devices[f"{metric}_normalized"] = (
(top_devices[metric] - min_val) / (max_val - min_val)
) * 100
# Create radar chart
fig = go.Figure()
# Add a trace for each device
for idx, row in top_devices.iterrows():
fig.add_trace(
go.Scatterpolar(
r=[
row["Rating_normalized"],
row["Token Rating_normalized"],
row["Prompt Rating_normalized"],
row["Rating_normalized"], # Close the shape
],
theta=["Overall", "Token Gen", "Prompt Proc", "Overall"],
fill="toself",
name=f"{row['Device']} ({row['Platform']})",
line=dict(
color=px.colors.qualitative.Set1[
idx % len(px.colors.qualitative.Set1)
]
),
hovertemplate="<b>%{name}</b><br>"
+ "Overall: %{r[0]:.1f}%<br>"
+ "Token Gen: %{r[1]:.1f}%<br>"
+ "Prompt Proc: %{r[2]:.1f}%<br>"
+ "<extra></extra>",
)
)
# Update layout
fig.update_layout(
polar=dict(
radialaxis=dict(visible=True, range=[0, 100], tickfont=dict(size=10)),
angularaxis=dict(tickfont=dict(size=12)),
),
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
title=dict(
text=f"Performance Comparison of Top {top_n} Devices",
x=0.5,
y=0.95,
font=dict(size=16),
),
margin=dict(t=100, l=50, r=50, b=50),
height=600,
)
return fig
def create_ranking_ladder(g2_confident_display: pd.DataFrame, top_n: int = 30):
"""Create a ranking ladder visualization showing device positions and confidence intervals."""
# Select top N devices
top_devices = g2_confident_display.nlargest(top_n, "Rating").copy()
# Create y-axis positions (rank 1 at top)
top_devices["rank_position"] = np.arange(1, len(top_devices) + 1)
# Create figure
fig = go.Figure()
# Add confidence intervals
for idx, row in top_devices.iterrows():
# Add confidence interval bars
fig.add_trace(
go.Scatter(
x=[
row["Rating"] - row["Rating Deviation"],
row["Rating"] + row["Rating Deviation"],
],
y=[row["rank_position"], row["rank_position"]],
mode="lines",
line=dict(color="rgba(0,0,0,0.3)", width=8),
showlegend=False,
hoverinfo="skip",
)
)
# Add rating points
for platform in top_devices["Platform"].unique():
platform_devices = top_devices[top_devices["Platform"] == platform]
fig.add_trace(
go.Scatter(
x=platform_devices["Rating"],
y=platform_devices["rank_position"],
mode="markers+text",
marker=dict(
size=12,
color=px.colors.qualitative.Set1[
list(top_devices["Platform"].unique()).index(platform)
% len(px.colors.qualitative.Set1)
],
),
text=platform_devices["Device"],
textposition="middle right",
textfont=dict(
color="rgba(0,0,0,1.0)", # Full black for maximum contrast
size=12, # Slightly larger
family="Arial Black, sans-serif", # Bold font
),
name=platform,
hovertemplate="<b>%{text}</b><br>"
+ "Rank: #%{y:.0f}<br>"
+ "Rating: %{x:.0f}<br>"
+ "Deviation: Β±%{customdata[0]:.0f}<br>"
+ "<extra></extra>",
customdata=platform_devices[["Rating Deviation"]].values,
)
)
# Update layout
fig.update_layout(
# title=dict(
# text=f"Device Ranking Ladder (Top {top_n})",
# x=0.4,
# y=0.95,
# font=dict(size=16, family="Arial, sans-serif", color="rgba(0,0,0,1.0)"),
# ),
xaxis=dict(
title="Rating",
showgrid=True,
gridwidth=1,
gridcolor="rgba(0,0,0,0.1)",
autorange="reversed", # Reverse x-axis to show highest values on left
title_font=dict(
size=14, family="Arial, sans-serif", color="rgba(0,0,0,1.0)"
),
),
yaxis=dict(
title="Rank",
showgrid=True,
gridwidth=1,
gridcolor="rgba(0,0,0,0.1)",
tickmode="array",
tickvals=top_devices["rank_position"],
ticktext=[f"#{i}" for i in range(1, len(top_devices) + 1)],
autorange="reversed", # This will put rank 1 at the top
title_font=dict(
size=14, family="Arial, sans-serif", color="rgba(0,0,0,1.0)"
),
),
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
font=dict(size=12, family="Arial, sans-serif", color="rgba(0,0,0,1.0)"),
),
margin=dict(t=100, l=50, r=100, b=50), # Reduced right margin from 200 to 100
height=800,
hovermode="closest",
paper_bgcolor="rgba(255,255,255,1)", # Pure white background
plot_bgcolor="rgba(255,255,255,1)", # Pure white plot area
autosize=True, # Enable responsive sizing
)
return fig
def render_device_rankings(df: pd.DataFrame):
"""Render device rankings using Glicko-2 algorithm."""
if df.empty:
st.warning("No data available for device rankings.")
return
# Calculate Glicko-2 rankings automatically
with st.spinner("Calculating Glicko-2 rankings..."):
try:
g2_all, g2_confident = analyze_glicko2_rankings(
df,
min_matches=5, # Default minimum matches
min_gpu_layers=20, # Default minimum GPU layers
)
# Display performance overview
# st.subheader("π Performance Overview")
# Get top device from Glicko-2 rankings
top_device = g2_confident.index[0] if not g2_confident.empty else "N/A"
top_device_clean = (
clean_device_id(top_device) if top_device != "N/A" else "N/A"
)
# Calculate total unique devices and models
total_devices = df["Normalized Device ID"].nunique()
total_models = df["Model ID"].nunique()
# Display metrics in columns
col1, col2, col3 = st.columns([3, 1, 1])
with col1:
st.metric("π Top Device", top_device_clean)
with col2:
st.metric("Total Devices", total_devices)
with col3:
st.metric("Total Models", total_models)
# st.markdown("---")
# Display confident rankings
if not g2_confident.empty:
# st.subheader("π± Device Rankings")
# Create a copy and handle the index
g2_confident_display = g2_confident.copy()
# Get the device ID column name
device_id_col = g2_confident_display.index.name or "device"
g2_confident_display = g2_confident_display.reset_index()
# Get platform information from the original dataframe
platform_map = (
df.groupby("Normalized Device ID")["Platform"].first().to_dict()
)
g2_confident_display["Platform"] = g2_confident_display[
device_id_col
].map(platform_map)
# Get model size range from the original dataframe
model_sizes = df.groupby("Normalized Device ID")["Model Size"].agg(
["min", "max"]
)
g2_confident_display["Model Size Range"] = g2_confident_display[
device_id_col
].apply(
lambda x: f"{model_sizes.loc[x, 'min']:.1f}B - {model_sizes.loc[x, 'max']:.1f}B"
)
# Add clean device name
g2_confident_display["Device"] = g2_confident_display[
device_id_col
].apply(clean_device_id)
# Round numeric columns to whole numbers
numeric_cols = [
"combined_rating",
"combined_rd",
"token_rating",
"prompt_rating",
]
for col in numeric_cols:
if col in g2_confident_display.columns:
g2_confident_display[col] = (
g2_confident_display[col].round(0).astype(int)
)
# Select and order columns for display
display_cols = [
"Device",
"Platform",
"combined_rating",
"combined_rd",
"token_rating",
"prompt_rating",
"Model Size Range",
]
# Rename columns for better display
rename_map = {
"combined_rating": "Rating",
"combined_rd": "Rating Deviation",
"token_rating": "Token Rating",
"prompt_rating": "Prompt Rating",
}
g2_confident_display = g2_confident_display.rename(columns=rename_map)
# Sort by Rating
g2_confident_display = g2_confident_display.sort_values(
"Rating", ascending=False
)
# Add rank column
g2_confident_display = g2_confident_display.reset_index(drop=True)
g2_confident_display.index = g2_confident_display.index + 1
g2_confident_display = g2_confident_display.rename_axis("Rank")
tab1, tab2 = st.tabs(
[
"Ranking Ladder",
"Ranking Table",
]
)
with tab1:
# Display the ranking ladder
st.plotly_chart(
create_ranking_ladder(g2_confident_display, top_n=30),
use_container_width=True,
)
with tab2:
# Display the table
st.dataframe(
g2_confident_display[
[
"Device",
"Platform",
"Rating",
"Rating Deviation",
"Token Rating",
"Prompt Rating",
"Model Size Range",
]
],
use_container_width=True,
height=min(600, (len(g2_confident_display) + 1) * 35 + 40),
hide_index=False,
)
else:
st.warning(
"No confident rankings available. Try adjusting the minimum matches threshold."
)
except Exception as e:
st.error(f"Error calculating Glicko-2 rankings: {str(e)}")
|